Insights into the interactions of cyanobacteria with uranium.

Photosynth Res

Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India,

Published: November 2013

Due to various activities associated with nuclear industry, uranium is migrated to aquatic environments like groundwater, ponds or oceans. Uranium forms stable carbonate complexes in the oxic waters of pH 7-10 which results in a high degree of uranium mobility. Microorganisms employ various mechanisms which significantly influence the mobility and the speciation of uranium in aquatic environments. Uranyl bioremediation studies, this far, have generally focussed on low pH conditions and related to adsorption of positively charged UO2 (2+) onto negatively charged microbial surfaces. Sequestration of anionic uranium species, i.e. [UO2(CO3) 2 (2-) ] and [UO2(CO3) 3 (4-) ] onto microbial surfaces has received only scant attention. Marine cyanobacteria are effective metal adsorbents and represent an important sink for metals in aquatic environment. This article addresses the cyanobacterial interactions with toxic metals in general while stressing on uranium. It focusses on the possible mechanisms employed by cyanobacteria to sequester uranium from aqueous solutions above circumneutral pH where negatively charged uranyl carbonate complexes dominate aqueous uranium speciation. The mechanisms demonstrated by cyanobacteria are important components of biogeochemical cycle of uranium and are useful for the development of appropriate strategies, either to recover or remediate uranium from the aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-013-9928-9DOI Listing

Publication Analysis

Top Keywords

aquatic environments
12
uranium
11
carbonate complexes
8
uranium aquatic
8
negatively charged
8
microbial surfaces
8
insights interactions
4
cyanobacteria
4
interactions cyanobacteria
4
cyanobacteria uranium
4

Similar Publications

One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.

View Article and Find Full Text PDF

Continuous Near-Bed Movements of Microplastics in Open Channel Flows: Statistical Analysis.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

The ubiquitous distribution of microplastics (MPs) in aquatic environments is linked to their transport in rivers and streams. However, the specific mechanism of bedload microplastic (MP) transport, notably their stochastic behaviors, remains an underexplored area. To investigate this, particle tracking velocimetry was employed to examine the continuous near-bed movements of four types of MPs under nine setups with different experimental conditions in a laboratory flume, with an emphasis on their streamwise transport.

View Article and Find Full Text PDF

Biofloc technology is an aquaculture production system that has gained popularity with tilapia production. Probiotics provide benefits for the host and/or aquatic environments by both regulating and modulating microbial communities and their metabolites. When a probiotic feed is combined with a biofloc system, the production amount may be improved through better fish growth, disease resistance, and/or improved water quality by reducing organic matter and stabilizing metrics such as pH and components of the nitrogen cycle.

View Article and Find Full Text PDF

High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds.

View Article and Find Full Text PDF

Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!