Statins are a class of drugs that inhibit the rate-limiting step in the cholesterol biosynthetic pathway and show an anticancer effect, probably through the inhibition of cell proliferation. To date, the exact mechanism of cancer cell growth arrest induced by statins is not known. We report that simvastatin is able to induce apoptosis in melanoma cells but not in normal cells and also able to contrast the growth of tumor in an experimental melanoma murine model. We observed a delay in the tumor development in almost the 50% of the simvastatin administered animals and a strong reduction of the tumor volume with a differences of ~150% compared to the controls. Also the survival rate was significantly higher in mice that received the drug with a survival increase of ~130% compared to the controls. The tumor growth reduction in mice was supported by the results of cell migration assay, confirming that simvastatin clearly reduced cell migration. Moreover, simvastatin induced a strong downregulation of NonO gene expression, an important growth factor involved in the splicing regulation. This result could explain the decrease of melanoma cells proliferation, suggesting a possible action mechanism. The results derived from our experiments may sustain the many reports on the anticancer inhibitory property of statins and encourage new studies on this drug for a possible use in therapy, probably in combination with conventional chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833984PMC
http://dx.doi.org/10.3892/ijo.2013.2126DOI Listing

Publication Analysis

Top Keywords

murine model
8
melanoma cells
8
compared controls
8
cell migration
8
simvastatin
5
simvastatin reduces
4
melanoma
4
reduces melanoma
4
melanoma progression
4
progression murine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!