The combination of protein crystallography and small-angle X-ray scattering (SAXS) provides a powerful method to investigate changes in protein conformation. These complementary structural techniques were used to probe the solution structure of the apo and the ligand-bound forms of the Arabidopsis thaliana acyl acid-amido synthetase GH3.12. This enzyme is part of the extensive GH3 family and plays a critical role in the regulation of plant hormones through the formation of amino-acid-conjugated hormone products via an ATP-dependent reaction mechanism. The enzyme adopts two distinct C-terminal domain orientations with `open' and `closed' active sites. Previous studies suggested that ATP only binds in the open orientation. Here, the X-ray crystal structure of GH3.12 is presented in the closed conformation in complex with the nonhydrolysable ATP analogue AMPCPP and the substrate salicylate. Using on-line HPLC purification combined with SAXS measurements, the most likely apo and ATP-bound protein conformations in solution were determined. These studies demonstrate that the C-terminal domain is flexible in the apo form and favours the closed conformation upon ATP binding. In addition, these data illustrate the efficacy of on-line HPLC purification integrated into the SAXS sample-handling environment to reliably monitor small changes in protein conformation through the collection of aggregate-free and highly redundant data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0907444913019276 | DOI Listing |
Cell Rep
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:
Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.
View Article and Find Full Text PDFMol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India. Electronic address:
Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!