Structural, spectroscopic and electrical studies of nanostructured porous ZnO thin films prepared by pulsed laser deposition.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Optoelectronics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam 686 560, Kerala, India.

Published: January 2014

AI Article Synopsis

Article Abstract

ZnO thin films are grown on quartz substrates at various substrate temperatures (ranging from 573 to 973 K) under an oxygen ambience of 0.02 mbar by using pulsed laser ablation. Influence of substrate temperature on the structural, morphological, optical and electrical properties of the ZnO thin films are investigated. The XRD and micro-Raman spectra reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye-Scherer equation and the average size of the crystallites are found to be in the range 17-29 nm. The AFM study reveals that the surface morphology of the film depends strongly on the substrate temperature. UV-Visible transmittance spectra show highly transparent nature of the films in visible region. The calculated optical band gap energy is found to be decrease with increase in substrate temperatures. The complex dielectric constant, the loss factor and the distribution of the volume and surface energy loss of the ZnO thin films prepared at different substrate temperatures are calculated. All the films are found to be highly porous in nature. The PL spectra show very strong emission in the blue region for all the films. The dc electrical resistivity of the film decreases with increase in substrate temperature. The temperature dependent electrical measurements done on the film prepared at substrate temperature 573 K reveals that the electric conduction is thermally activated and the activation energy is found to be 0.03911 eV which is less than the reported values for ZnO films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.08.090DOI Listing

Publication Analysis

Top Keywords

zno thin
16
thin films
16
substrate temperature
16
substrate temperatures
12
films
8
films prepared
8
pulsed laser
8
increase substrate
8
prepared substrate
8
substrate
7

Similar Publications

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization.

View Article and Find Full Text PDF

Zinc oxide (ZnO) thin-film transistors (TFTs) can be promising for applications in wide-band light absorption. However, they suffer from retarded photoresponse characteristics due to atomic defects and the resulting localized electronic states. To investigate the photoinduced localized states of the ZnO TFTs, here, we combine X-ray photoelectron spectroscopy, atomic force microscopy, and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.

View Article and Find Full Text PDF

The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!