Objective: High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process.
Approach: A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.
Main Results: The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.
Significance: Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848963 | PMC |
http://dx.doi.org/10.1088/1741-2560/10/6/066004 | DOI Listing |
Exp Physiol
January 2025
Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia.
Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.
View Article and Find Full Text PDFACS Nano
January 2025
Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
Cardiac arrest (CA) is a life-threatening condition that requires immediate medical attention. Considerable advances in resuscitation have led to an increasing number of patients who survive the initial arrest event. However, among this growing patient population, morbidity and mortality rates remain strikingly high.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFCureus
December 2024
Biotechnology, Shri Venkateshwara University, Gajraula, IND.
Sepsis-associated acute kidney injury (S-AKI) is a critical complication that significantly contributes to the morbidity and mortality of sepsis patients. This narrative review explores the complex and multifactorial pathophysiology of S-AKI, which involves hemodynamic alterations, microcirculatory dysfunction, endothelial damage, inflammatory responses, oxidative stress, and direct tubular injury. Conventional perspectives linking S-AKI primarily to reduced renal blood flow are now being reconsidered, with growing insights highlighting the significance of microcirculatory dysfunction and endothelial activation as key contributors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!