Human phospholipid scramblase 1 (SCR) was originally described as an intrinsic membrane protein catalyzing transbilayer phospholipid transfer in the absence of ATP. More recently, a role as a nuclear transcription factor has been proposed for SCR, either in addition or alternatively to its capacity to facilitate phospholipid flip-flop. Uncertainties exist as well from the structural point of view. A predicted α-helix (aa residues 288-306) located near the C-terminus has been alternatively proposed as a transmembrane domain, or as a protein core structural element. This paper explores the possibilities of the above helical segment as a transmembrane domain. To this aim two peptides were synthesized, one corresponding to the 19 α-helical residues, and one containing both the helix and the subsequent 12-residues constituting the C-end of the protein. The interaction of these peptides with lipid monolayers and bilayers was tested with Langmuir balance surface pressure measurements, proteoliposome reconstitution and analysis, differential scanning calorimetry, tests of bilayer permeability, and fluorescence confocal microscopy. Bilayers of 28 different lipid compositions were examined in which lipid electric charge, bilayer fluidity and lateral heterogeneity (domain formation) were varied. All the results concur in supporting the idea that the 288-306 peptide of SCR becomes membrane inserted in the presence of lipid bilayers. Thus, the data are in agreement with the possibility of SCR as an integral membrane protein, without rejecting alternative cell locations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2013.09.018 | DOI Listing |
Oncol Lett
March 2025
Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.
Neoadjuvant chemoradiotherapy (nCRT) is the standard treatment for locally advanced rectal cancer (LARC). Pathological complete regression is closely linked to disease outcomes. However, biomarkers predicting nCRT response and patient survival are lacking for LARC.
View Article and Find Full Text PDFAdv Mater
January 2025
Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Tumor vaccines that activate the autologous immune system to eliminate tumor cells represent a promising approach in cancer immunotherapy. However, challenges such as tumor heterogeneity, limited antigen selection, insufficient antigen presentation, and the slow onset of de novo immune responses have resulted in poor universality and suboptimal response rates. In contrast, pathogen-specific pre-existing immunity acquired through infection or vaccination, can rapidly generate a more potent and enduring immune response upon re-encounter with the same antigen.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
TMPRSS4, a transmembrane serine protease type II, is associated with various pathological illnesses. It has been found to activate SARS-CoV-2, enhance viral infection of human small-intestinal enterocytes and is overexpressed in different types of cancers. Therefore, this study aims to disover potential TMPRSS4 inhibitors that have better binding affinity than the approved inhibitors: 2-hydroxydiarylamide and tyroserleutide.
View Article and Find Full Text PDFNat Plants
January 2025
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.
View Article and Find Full Text PDFOphthalmic Genet
January 2025
Department of Ophthalmology, Hospital das Clínicas - Empresa Brasileira de Serviços Hospitalares, Federal University of Pernambuco, Recife, Brazil.
Background: Oculodentodigital dysplasia (ODDD) is a rare syndrome that causes a constellation of facial, ophthalmic, dental, and limb abnormalities. Variants in the gap junction alpha-1 () gene have been described in patients with ODDD. Hereby we present the ocular manifestations in a patient with recessive ODDD due to a novel homozygous frameshift variant in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!