Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: When modelling infectious diseases, accurately capturing the pattern of dissemination through space is key to providing optimal recommendations for control. Mathematical models of disease spread in livestock, such as for foot-and-mouth disease (FMD), have done this by incorporating a transmission kernel which describes the decay in transmission rate with increasing Euclidean distance from an infected premises (IP). However, this assumes a homogenous landscape, and is based on the distance between point locations of farms. Indeed, underlying the spatial pattern of spread are the contact networks involved in transmission. Accordingly, area-weighted tessellation around farm point locations has been used to approximate field-contiguity and simulate the effect of contiguous premises (CP) culling for FMD. Here, geographic data were used to determine contiguity based on distance between premises' fields and presence of landscape features for two sample areas in Scotland. Sensitivity, positive predictive value, and the True Skill Statistic (TSS) were calculated to determine how point distance measures and area-weighted tessellation compared to the 'gold standard' of the map-based measures in identifying CPs. In addition, the mean degree and density of the different contact networks were calculated.
Results: Utilising point distances <1 km and <5 km as a measure for contiguity resulted in poor discrimination between map-based CPs/non-CPs (TSS 0.279-0.344 and 0.385-0.400, respectively). Point distance <1 km missed a high proportion of map-based CPs; <5 km point distance picked up a high proportion of map-based non-CPs as CPs. Area-weighted tessellation performed best, with reasonable discrimination between map-based CPs/non-CPs (TSS 0.617-0.737) and comparable mean degree and density. Landscape features altered network properties considerably when taken into account.
Conclusion: The farming landscape is not homogeneous. Basing contiguity on geographic locations of field boundaries and including landscape features known to affect transmission into FMD models are likely to improve individual farm-level accuracy of spatial predictions in the event of future outbreaks. If a substantial proportion of FMD transmission events are by contiguous spread, and CPs should be assigned an elevated relative transmission rate, the shape of the kernel could be significantly altered since ability to discriminate between map-based CPs and non-CPs is different over different Euclidean distances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126065 | PMC |
http://dx.doi.org/10.1186/1746-6148-9-198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!