Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common inherited muscle diseases caused by mutations in the dystrophin gene. The reading frame rule explains the genotype-phenotype relationship in DMD/BMD. In Vietnam, extensive mutation analysis has never been conducted in DMD/BMD. Here, 152 Vietnamese muscular dystrophy patients were examined for dystrophin exon deletion by amplifying 19 deletion-prone exons and deletion ends were confirmed by dystrophin cDNA analysis if necessary. The result was that 82 (54%) patients were found to have exon deletions, thus confirming exact deletion ends. A further result was that 37 patterns of deletion were classified. Deletions of exons 45-50 and 49-52 were the most common patterns identified, numbering six cases each (7.3%). The reading frame rule explained the genotype-phenotype relationship, but not five (6.1%) DMD cases. Each of five patients had deletions of exons 11-27 in common. The applicability of the therapy producing semifunctional in frame mRNA in DMD by inducing skipping of a single exon was examined. Induction of exon 51 skipping was ranked at top priority, since 16 (27%) patients were predicted to have semifunctional mRNA skipping. Exons 45 and 53 were the next ranked, with 12 (20%) and 11 (18%) patients, respectively. The largest deletion database of the dystrophin gene, established in Vietnamese DMD/BMD patients, disclosed a strong indication for exon-skipping therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/01677063.2013.830616 | DOI Listing |
Cardiol Young
January 2025
Loma Linda Children's Hospital, Department of Pediatric Cardiology, Loma Linda, CA, USA.
Dilated cardiomyopathy is an expected manifestation and common cause of death in patients with Duchenne muscular dystrophy. We present an unusually rapid progression of cardiomyopathy in a boy with Duchenne muscular dystrophy. Expanded genetic testing revealed a contiguous Xp21 deletion involving dystrophin and XK genes, responsible for Duchenne muscular dystrophy and McLeod neuroacanthocytosis syndrome, respectively, resulting in a more severe cardiac phenotype.
View Article and Find Full Text PDFSci Rep
January 2025
Sarepta Therapeutics, Inc., Cambridge, MA, USA.
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674).
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.
Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.
Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.
Expert Opin Drug Saf
December 2024
Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
Introduction: Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allows for gene therapies to better address the genetic cause of the disease.
View Article and Find Full Text PDFJ Int Med Res
December 2024
Department of Pediatrics, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabi.
Objective: Duchenne muscular dystrophy (DMD) is a rare X-linked neurodegenerative disorder caused by mutations in the gene. This study examined the efficacy and safety of ataluren, the first oral treatment for DMD with nonsense mutations (nmDMD), in patients in the Middle East.
Methods: This retrospective longitudinal study assessed the outcomes of seven boys with nmDMD who received treatment with ataluren and follow-up at a single center since 2016.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!