The aim of this work was to investigate how the oxidative stability of encapsulated oil is affected by the humidity response of a Na-caseinate-maltodextrin matrix. Furthermore, the effect of modification of the interfacial Na-caseinate layer through cross-linking was studied. For this purpose, two model spray-dried emulsions containing sunflower oil, maltodextrin, and either non-cross-linked or cross-linked Na-caseinate were stored at different relative humidities (RHs; ∼0%, 11%, 33%, 54%, and 75%). Increasing RH improved the oxidative stability of the spray-dried emulsions. This behaviour was mainly linked to the loss of individual powder particles upon caking and collapsing of the matrix at RH 75%. Oxidation of non-encapsulated surface lipids with a proportion of ca. 5% of total lipids was only twofold compared to total lipids. Excess protein on particle surfaces may have delayed oxidation, e.g., by its radical scavenging activity. Under several storage conditions, cross-linking of the protein slightly improved the oxidative stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2013.04.006 | DOI Listing |
Nanoscale Adv
January 2025
School of Chemical Engineering, Yeungnam University 280 Daehak-Ro Gyeongsan 38541 Republic of Korea
Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.
View Article and Find Full Text PDFJACS Au
January 2025
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
The total oxidation of -hexane, a hazardous volatile organic compound (VOC) emitted by the pharmaceutical industry, presents a significant environmental challenge due to limited catalyst activity at low temperatures and poor stability at high temperatures. Here, we present a novel approach that overcomes these limitations by employing single-atom Ag/MnO catalysts coupled with nonthermal plasma (NTP). This strategy achieves exceptional performance in -hexane oxidation at low temperatures, demonstrating 96.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Numerous attempts for organic radical stability mostly entail steric hindrance, spin-delocalization, supramolecular interaction with the host, π-π interactions, and hydrogen bonding. To date, there is no report of single crystals containing a hydroxyl radical (OH). In this work, we have stabilized OH in the crystal, which has been obtained from the filtrate after separating the precipitate of the chromenopyridine radical (DCP(2)) from the reaction mixture.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980.
The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.
View Article and Find Full Text PDFChem Sci
January 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China
O3-type NaNiMnO cathode material exhibits significant potential for sodium-ion batteries (SIBs) owing to its high theoretical capacity and ample sodium reservoir. Nonetheless, its practical implementation encounters considerable obstacles, such as impaired structural integrity, sensitivity to moisture, inadequate high-temperature stability, and being unstable under high-voltage conditions. This study investigates the co-substitution of Cu, Mg, and Ti, guided by principles of the periodic law, to enhance the material's stability under varying conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!