We present here for the first time a simple method for micropatterning nonwoven composite membranes. The approach is based on the simultaneous electrospraying of microparticles and electrospinning of nanofibers from different polymer solution feeds (polyethylene glycol and poly(D,L-lactide)) on a common support. The mechanism of self-organization between fibers and particles into hierarchical honeycomb-like structures, as well as the evolution of the later as a function of the thickness of the composite, is investigated. We demonstrate that aggregates of particles, leading to a nonuniform distribution of the electrostatic field near the collector, are necessary to form the self-organized composite. Furthermore, it is shown that the specific dimensions of the generated patterns can be controlled by tuning the flow rate of electrospraying. The obtained composite mat exhibits a multilevel porous structure, with pore sizes ranging from few up to several hundreds of micrometers. Finally, it is shown that the microparticles can be selectively leached, allowing the production of a monocomponent membrane and retaining the hierarchical organization of the nanofibers suitable for biomedical and filtration applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am402676m | DOI Listing |
Eur Heart J Acute Cardiovasc Care
January 2025
Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea.
Background: The long-term effects of early left ventricular unloading after venoarterial extracorporeal membrane oxygenation (VA-ECMO) remain unclear.
Methods: The EARLY-UNLOAD trial was a single-center, investigator-initiated, open-label, randomized clinical trial involving 116 patients with cardiogenic shock (CS) undergoing VA-ECMO. The patients were randomly assigned to undergo either early routine left ventricular unloading by transseptal left atrial cannulation within 12 hours after randomization or the conventional approach, which permitted rescue transseptal cannulation in case of an increased left ventricular afterload.
J Cell Biochem
January 2025
Bioinformatics Division I Microbiology Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India.
B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
Backgrounds: Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking may plays a crucial role in various life activities related to growth and development.
View Article and Find Full Text PDFCortical layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons are embedded in distinct information processing pathways. Their morphology, connectivity, electrophysiological properties, and role in behavior have been extensively analyzed. However, the molecular composition of their synapses remains largely uncharacterized.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.
In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!