Heregulin signaling is involved in various tumor proliferations and invasions; thus, receptors of heregulin are targets for the cancer therapy. In this study we examined the suppressing effects of extracellular domains of ErbB2, ErbB3, and ErbB4 (soluble ErbB (sErbB)) on heregulin β signaling in human breast cancer cell line MCF7. It was found that sErbB3 suppresses ligand-induced activation of ErbB receptors, PI3K/Akt and Ras/Erk pathways most effectively; sErbB2 scarcely suppresses ligand-induced signaling, and sErbB4 suppresses receptor activation at ∼10% efficiency of sErbB3. It was revealed that sErbB3 does not decrease the effective ligands but decreases the effective receptors. By using small interfering RNA (siRNA) for ErbB receptors, we determined that sErbB3 suppresses the heregulin β signaling by interfering ErbB3-containing heterodimers including ErbB2/ErbB3. By introducing the mutation of N418Q to sErbB3, the signaling-inhibitory effects were increased by 2-3-fold. Moreover, the sErbB3 N418Q mutant enhanced anticancer effects of lapatinib more effectively than the wild type. We also determined the structures of N-glycan on Asn-418. Results suggested that the N-glycan-deleted mutant of sErbB3 suppresses heregulin signaling via ErbB3-containing heterodimers more effectively than the wild type. Thus, we demonstrated that the sErbB3 N418Q mutant is a potent inhibitor for heregulin β signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829142 | PMC |
http://dx.doi.org/10.1074/jbc.M113.491902 | DOI Listing |
Redox Biol
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:
Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.
View Article and Find Full Text PDFNat Cancer
January 2025
Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China.
Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism.
View Article and Find Full Text PDFNeuroscience
February 2025
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China. Electronic address:
The cerebrospinal fluid-contacting nucleus(CSF-contacting nucleus) is a pair of unique nuclei in the brain parenchyma which has long been demonstrated to play an important role in pain signal processing. However, the mechanisms by which the CSF-contacting nucleus intervenes in pain is unclear. The NRG1-ErbB4 signaling plays an important role in the nervous system and has been shown to be involved in the regulation of pain.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2024
Engineering Research Center, Ministry of Education, Hubei University of Chinese Medicine Wuhan 430065, China Hubei Shizhen Labortary Wuhan 430065, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!