Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer.

Clin Cancer Res

Authors' Affiliations: Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center Medical School; Departments of Pathology & Immunology and Molecular & Cell Biology, Dan L. Duncan Cancer Center, Scott Department of Urology, Baylor College of Medicine; Department of Urology, The Methodist Hospital, Houston, Texas; and Department of Internal Medicine, Detroit Medical Center, Sinai-Grace Hospital, Wayne State University, Detroit, Michigan.

Published: November 2013

Background: Semaphorin 4F (S4F) has roles in embryologic axon guidance and is expressed in adults. S4F is involved in cancer-induced neurogenesis.

Methods: Prostate cells were transfected with S4F retrovirus. Cells and controls were used for a bromodeoxyuridine (BrdUrd) incorporation assay (proliferation) and in vitro scratch and Matrigel Transwell chamber invasion assay (migration). Monoclonal antibodies were developed using baculovirus-expressed recombinant GST-S4F and used to immunostain tissue microarrays. Slides were imaged using deconvolution and analyzed using tissue segmentation. Data were correlated with clinicopathologic parameters, other biomarkers and survival analysis conducted. Heterogeneity of S4F expression was analyzed with unsupervised clustering algorithms.

Results: Proliferation rates measured by BrdUrd incorporation were higher in all S4F-transfected cells. S4F overexpression was associated with increased motility of the cancer cells. S4F expression was overexpressed in high-grade prostatic intraepithelial neoplasia/prostate cancer than normal epithelium. S4F expression correlated with seminal vesicle invasion. Patients with high values of S4F in prostate cancer cytoplasm are at significantly higher risk of biochemical recurrence, by univariate and multivariate analyses. S4F cytoplasmic expression in prostate cancer cells also correlates with nerve density in prostate cancer and perineural invasion diameter. Correlations were identified with NF-κB and inversely with apoptosis in perineural invasion.

Conclusion: These data show that S4F is significantly involved in human prostate cancer progression. S4F is a key regulator of the interactions between nerves in the tumor microenvironment and cancer cells. Because of the importance of cancer nerve interaction in the biology of cancer and its clinical implication, S4F can be considered a major therapeutic target. Clin Cancer Res; 19(22); 6101-11. ©2013 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898797PMC
http://dx.doi.org/10.1158/1078-0432.CCR-12-3669DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
s4f
12
s4f expression
12
cancer cells
12
cancer
11
s4f involved
8
brdurd incorporation
8
cells s4f
8
prostate
6
cells
6

Similar Publications

Comprehensive analysis of the interaction microbiome and prostate cancer: an initial exploration from multi-cohort metagenome and GWAS studies.

J Transl Med

January 2025

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.

Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Purposes: The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-RADS category 3 patients.

Methods: This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers (Centers 1-6) between Jan 2015 and Dec 2020.

View Article and Find Full Text PDF

Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!