SAMP1 and SAMP2 are ubiquitin-like proteins that function as protein modifiers and are required for the production of sulfur-containing biomolecules in the archaeon Haloferax volcanii. Here we report a novel small archaeal modifier protein (named SAMP3) with a β-grasp fold and C-terminal diglycine motif characteristic of ubiquitin that is functional in protein conjugation in Hfx. volcanii. SAMP3 conjugates were dependent on the ubiquitin-activating E1 enzyme homolog of archaea (UbaA) for synthesis and were cleaved by the JAMM/MPN+ domain metalloprotease HvJAMM1. Twenty-three proteins (28 lysine residues) were found to be isopeptide-linked to the C-terminal carboxylate of SAMP3, and 331 proteins were reproducibly found associated with SAMP3 in a UbaA-dependent manner based on tandem mass spectrometry (MS/MS) analysis. The molybdopterin (MPT) synthase large subunit homolog MoaE, found samp3ylated at conserved active site lysine residues in MS/MS analysis, was also shown to be covalently bound to SAMP3 by immunoprecipitation and tandem affinity purifications. HvJAMM1 was demonstrated to catalyze the cleavage of SAMP3 from MoaE, suggesting a mechanism of controlling MPT synthase activity. The levels of samp3ylated proteins and samp3 transcripts were found to be increased by the addition of dimethyl sulfoxide to aerobically growing cells. Thus, we propose a model in which samp3ylation is covalent and reversible and controls the activity of enzymes such as MPT synthase. Sampylation of MPT synthase may govern the levels of molybdenum cofactor available and thus facilitate the scavenging of oxygen prior to the transition to respiration with molybdenum-cofactor-containing terminal reductases that use alternative electron acceptors such as dimethyl sulfoxide. Overall, our study of SAMP3 provides new insight into the diversity of functional ubiquitin-like protein modifiers and the network of ubiquitin-like protein targets in Archaea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879616 | PMC |
http://dx.doi.org/10.1074/mcp.M113.029652 | DOI Listing |
BMC Med Genomics
December 2024
Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Background: Molybdenum cofactor deficiency (MoCD) is a rare metabolic disorder caused by pathogenic variants in the highly conserved biosynthetic pathway of molybdenum cofactor (MoCo), resulting in sulfite intoxication. MoCD may present in a clinically severe, fatal form marked by intractable seizures after birth, hyperekplexia, microcephaly and cerebral atrophy, or a later onset form with a more varied clinical course. Three types of MoCD have been described based on the effected gene along the MoCo synthesis pathway: type A (MOCS1); type B (MOCS2 or MOCS3) and type C (GPHN).
View Article and Find Full Text PDFInt J Mol Sci
January 2023
MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of .
View Article and Find Full Text PDFMolecules
June 2022
Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
Molybdenum cofactor (Moco) biosynthesis requires iron, copper, and ATP. The Moco-containing enzyme sulfite oxidase catalyzes terminal oxidation in oxidative cysteine catabolism, and another Moco-containing enzyme, xanthine dehydrogenase, functions in purine catabolism. Thus, molybdenum enzymes participate in metabolic pathways that are essential for cellular detoxication and energy dynamics.
View Article and Find Full Text PDFRedox Biol
May 2022
Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA. Electronic address:
Overproduction of reactive oxygen species (ROS) drives inflammation and mutagenesis. However, the role of the DNA damage response in immune responses remains largely unknown. Here we found that stabilization of the mismatch repair (MMR) protein MSH6 in response to alkylation damage requires interactions with the molybdopterin synthase associating complex (MPTAC) and Ada2a-containing histone acetyltransferase complex (ATAC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!