QM-FISH analysis of the genes involved in the G1/S checkpoint signaling pathway in triple-negative breast cancer.

Tumour Biol

3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.

Published: March 2014

This study was conducted to analyze copy number alterations (CNAs) of the genes involved in the G1/S checkpoint signaling pathway of triple-negative breast cancer (TNBC) and to evaluate their clinical value in the prognosis of TNBC. Quantitative multi-gene fluorescence in situ hybridization was used to study CNAs of the genes involved in the G1/S checkpoint signaling pathway, including cyclin d1 (CCND1), c-Myc, p21, cell-cycle-checkpoint kinase 2 gene, p16, retinoblastoma (Rb1), murine double minute 2 (Mdm2) and p53, in 60 TNBC samples and 60 non-TNBC samples. In comparison with the non-TNBC samples, CNAs of the genes involved in the G1/S checkpoint signaling pathway were more frequently observed in the TNBC samples (p = 0.000). Out of a total of eight genes, six (CCND1, c-Myc, p16, Rb1, Mdm2, and p53) exhibited significantly different CNAs between the TNBC group and the non-TNBC group. Univariate survival analysis revealed that the gene amplification of c-Myc (p = 0.008), Mdm2 (p = 0.020) and the gene deletion of p21 (p = 0.004), p16 (p = 0.015), and Rb1 (p = 0.028) were the independent predictive factor of 5-year OS for patients with TNBC. Cox multivariate analysis revealed that the gene amplification of c-Myc (p = 0.026) and the gene deletion of p21 (p = 0.019) and p16 (p = 0.034) were independent prognostic factors affecting the 5-year OS for TNBC. CNAs of the genes involved in the G1/S checkpoint signaling pathway presented a higher rate of incidence in TNBC than in non-TNBC, which could indicate one of the molecular mechanisms for the specific biological characteristics of TNBC. The genes c-Myc, p21, and p16 were correlated with the prognosis of TNBC and therefore may have potential clinical application values in the prognostic prediction of TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-013-1246-5DOI Listing

Publication Analysis

Top Keywords

genes involved
20
involved g1/s
20
g1/s checkpoint
20
checkpoint signaling
20
signaling pathway
20
cnas genes
16
tnbc
11
pathway triple-negative
8
triple-negative breast
8
breast cancer
8

Similar Publications

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Inhibition of transcriptional regulation of detoxification genes contributes to insecticide resistance management in Spodoptera exigua.

Commun Biol

January 2025

Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!