Microbial bioanodes were formed in pulp and paper effluent on graphite plate electrodes under constant polarization at -0.3 V/SCE, without any addition of nutriment or substrate. The bioanodes were characterized in 3-electrode set-ups, in continuous mode, with hydraulic retention times from 6 to 48 h and inlet COD from 500 to 5200 mg/L. Current densities around 4A/m(2) were obtained and voltammetry curves indicated that 6A/m(2) could be reached at +0.1 V/SCE. A theoretical model was designed, which allowed the effects of HRT and COD to be distinguished in the complex experimental data obtained with concomitant variations of the two parameters. COD removal due to the electrochemical process was proportional to the hydraulic retention time and obeyed a Michaelis-Menten law with respect to the COD of the outlet flow, with a Michaelis constant KCOD of 400mg/L. An inhibition effect occurred above inlet COD of around 3000 mg/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.09.025 | DOI Listing |
J Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:
The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.
View Article and Find Full Text PDFWater Res
December 2024
Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
Bioelectrochemical anaerobic ammonium oxidation (anammox) systems allow eco-friendly removal of nitrogen from reject wastewater coming from biogas processing as the anammox bacteria have previously shown to have c-type cytochromes acting in the extracellular electron transport (EET) mechanism between the bacteria and electrode. The anammoxosome compartment present in anammox bacteria features a highly curved membrane and contains tubular structures along with electron-dense particles that contain iron, which could enhance the process of EET and enhance nitrogen removal by properly applied potentials. In this study, nitrogen removal was investigated in the electrostimulated anammox nitrogen removal (EANR) cells operated comparatively at open circuit and at applied potentials of - 300 mV, - 500 mV, and - 700 mV vs.
View Article and Find Full Text PDFEnviron Pollut
December 2024
College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China. Electronic address:
As a typical sulfur-containing volatile organic compound, dimethyl disulfide (DMDS) is known for its high toxicity and resistance to degradation, necessitating efficient control in environmental media. To address the limitations of biological treatment in degradation capacity, this study employs electro-stimulation to promote DMDS elimination by a porous polyaniline@carbon nanotube bioanode developed on graphite sheet (PANI@CNT/GS). Compared with the unmodified GS bioanode, the PANI@CNT/GS bioanode demonstrates significant advantages in biofilm activity, redox property, and DMDS degradation efficiency.
View Article and Find Full Text PDFNat Commun
October 2024
Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!