The purpose of the current study was to investigate the metabolite profile of [(3)H]triptolide in rats. The separation and characterisation techniques used to identify the major metabolites were high-performance liquid chromatography-online radiodetector, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and nuclear magnetic resonance. In all, 33 major metabolites were detected. The major components found in the rat plasma included the parent drug and its monohydroxy- and dihydroxy-metabolites. Reference standards for the monohydroxy-metabolites were obtained either by the incubation of the parent drug with rat liver microsomes or by microbial transformation with Cunninghamella blakesleana. The metabolites' structures were identified as 17-hydroxytriptolide, 16-hydroxytriptolide, tripdiolide, and 15-hydroxytriptolide. The major metabolites found in male rat urine included the monohydroxy-, dihydroxy-, and trihydroxy-metabolites. The major metabolites in female rat urine were the monohydroxy- and dihydroxy-metabolites, as well as sulphates of the monohydroxy-metabolites. A glutathione adduct, multiple hydroxy-metabolites, and a number of unidentified metabolites were detected in the bile and faeces of male rats. Sulphates of monohydroxy-metabolites were detected in the bile and faeces of female rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2013.08.015 | DOI Listing |
BMC Cancer
January 2025
Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fujian, 350108, China.
Objective: This study aims to identify potential lipid biomarkers and metabolic pathways associated with oral cancer (OC). Then to establish and evaluate disease classification models capable of distinguishing OC patients from healthy controls.
Methods: A total of 41 OC patients and 41 controls were recruited from a hospital in Southeast China to examine the serum lipidomics by Ultra-high Performance Liquid Chromatography Q Exactive Mass Spectrometry (UHPLC-QE-MS).
Drug Metab Dispos
January 2025
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China. Electronic address:
Ethnopharmacological Relevance: Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Türkiye; Department of Biomedical Engineering, Faculty of Engineering, Inonu University, Malatya, Türkiye. Electronic address:
Preeclampsia, a life-threatening pregnancy complication, remains a major global health concern. Understanding the complex molecular mechanisms underlying this disorder is crucial for improving both diagnostics and therapeutic strategies. In this study, a multi-omics approach based on NMR metabolomics and RNA-seq transcriptomics analyses was conducted to analyze placental tissue samples obtained from patients with preeclampsia and healthy controls.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France.
Pesticide transformation products (TPs) are frequently quantified in aquatic systems, including surface and groundwater. They often present higher polarity than parent compounds, are less volatile and less biodegradable and are therefore more mobile and persistent. These properties make them compounds of main interest in water resources and drinking water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!