Effect of β-cyclodextrin on intra and intermolecular Michael addition of some catechol derivatives.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran. Electronic address:

Published: January 2014

The oxidation reactions of catechol, dopamine and epinephrine have been studied in the absence and presence of N-methylaniline by UV-Vis. Spectrophotometry. A variety of reaction pathways (inter and intramolecular reactions) that followed by this oxidation have been observed depending on the nature of catechol derivatives. The observed homogeneous rate constants of the reactions were estimated by fitting the absorption time profiles for each reaction. The effect of β-cyclodextrin and its inclusion complex has also been studied on the chosen reactions. The formation constants of the complexes of catechol, dopamine and epinephrine with β-cyclodextrin as well as the rate constants of the reactions of free and complexed forms have been obtained by fitting the absorption-time spectra to a proposed kinetic-equilibrium model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.09.029DOI Listing

Publication Analysis

Top Keywords

catechol derivatives
8
catechol dopamine
8
dopamine epinephrine
8
rate constants
8
constants reactions
8
reactions
5
β-cyclodextrin intra
4
intra intermolecular
4
intermolecular michael
4
michael addition
4

Similar Publications

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.

View Article and Find Full Text PDF

Quality by Design-Steered Chromatographic Separation and Identification of the Geometric Isomers of Capsiate by Reversed-Phase HPLC and LC-MS.

J Chromatogr Sci

January 2025

Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain.

An efficient reverse-phase high-performance liquid chromatographic method, based on the design of the experiment approach, was developed for the simultaneous determination of capsiate isomers. Critical method parameters, i.e.

View Article and Find Full Text PDF

Background: Presentations and outcomes of acute myocardial infarction (MI) differ between women and men, with the worst outcomes being reported in younger women. Mental stress induced ischemia and sympathetic activation have been suggested to play a prominent role in the pathogenesis of MI in younger women, however, the impact of sex hormones on these parameters remains unknown.

Methods: The effect of sex hormones and age on myocardial infarct size and myocardial sympathetic activity (MSA) was assessed in male and female, as well as young (4-6 months) and aged (20-22 months) FVB/N mice (n = 106, 60 gonadectomized and 46 sham-operated animals) who underwent in vivo [C]meta-hydroxyephedrine ([C]mHED) positron emission tomography (PET) and cardiac magnetic resonance (CMR) imaging 24 h after a 30 min myocardial ischemic injury.

View Article and Find Full Text PDF

Secondary Alkylation of Arenes via the Borono-Catellani Strategy.

J Am Chem Soc

January 2025

Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.

A modular platform technology for the synthesis of α-aryl carbonyl derivatives via Borono-Catellani-type secondary alkylation of arenes is presented. This practical method features a broad substrate scope regarding aryl boronic acid catechol esters, secondary alkyl bromides, and diversified terminating reagents (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!