Quantitative determination of phenolic compounds by UHPLC-UV-MS and use of partial least-square discriminant analysis to differentiate chemo-types of Chamomile/Chrysanthemum flower heads.

J Pharm Biomed Anal

National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, University, MS 38677, USA. Electronic address:

Published: January 2014

A new rapid UHPLC-UV-QTOF/MS method has been developed for the simultaneous analysis of nine phenolic compounds [(Z)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acid (cis-GMCA), chlorogenic acid, (E)-2-β-d-glucopyranosyloxy-4-methoxycinnamic acid (trans-GMCA), quercetagetin-7-O-β-d-glucopyranoside, luteolin-7-O-β-d-glucoside, apigenin-7-O-β-d-glucoside, chamaemeloside, apigenin 7-O-(6″-O-acetyl-β-d-glucopyranoside), apigenin] and one polyacetylene (tonghaosu) from the flower heads of Chamomile/Chrysanthemum samples. The chromatographic separation was achieved using a reversed phase C18 column with a mobile phase of water and acetonitrile, both containing 0.05% formic acid. The ten compounds were completely separated within 15min at a flow rate of 0.25mL/min with a 2μL injection volume. The different chemo-types of Chamomiles/Chrysanthemum displayed variations in the presence of chemical constituents. German Chamomile samples confirmed the presence of cis-GMCA, trans-GMCA, apigenin-7-O-β-d-glucoside and tonghaosu as major constituents whereas Roman chamomile samples confirmed the presence of chamamaeloside and apigenin as major compounds. The Chrysanthemum morifolium samples showed the presence of luteolin-7-O-β-d-glucose as the major compound. The method was applied for the analysis of various commercial products including capsules, tea bags, body and hair care products. LC-mass spectrometry with electrospray ionization (ESI) interface method is described for the evaluation of ten compounds in plant samples and commercial products. This method involved the detection of [M+Na](+) and [M+H](+) ions in the positive mode. Partial least squares discriminant analysis (PLS-DA) was used to visualize commercial samples quality and may be of value for discriminating between chamomile types and Chrysanthemum with regards to the relative content of individual constituents. The results indicated that the method is suitable as a quality control test for various Chamomile/Chrysanthemum samples and market products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2013.08.037DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
8
discriminant analysis
8
flower heads
8
chamomile/chrysanthemum samples
8
ten compounds
8
chamomile samples
8
samples confirmed
8
confirmed presence
8
commercial products
8
samples
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!