A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell. | LitMetric

Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell.

J Environ Manage

Department of Civil and Environmental Engineering, KAIST, Daejeon 305-701, Republic of Korea.

Published: November 2013

Escherichia coli is an important microbial indicator of fecal contamination, making accurate quantitative detection of E. coli a key to ensuring public health. In this study, a microbial fuel cell (MFC) was used as a detection unit of an E. coli sensor, and specific enzymes expressed in E. coli, such as β-D-galactosidase (GAL) and β-D-glucuronidase (GUS), were exploited as biological detection elements. As substrates, 4-aminophenyl-β-D-galactopyranoside (4-APGal) were used for GAL detection, whereas 8-hydroxyquinoline glucuronide (8-HQG) and 4-nitrophenyl β-D-glucuronide (PNPG) were used for GUS detection. Once these substrates were hydrolyzed by GAL or GUS, they became electrochemically active products, which were, in turn, oxidized on the anode of the MFC reactor. The power output of the MFC reactor increased sharply when E. coli in the reactor reached the critical concentration. Accordingly, the time required to reach the highest voltage output was recorded as a detection time (DT), and a negative linear relationship was established between DT and the logarithm of the initial concentration of E. coli in the samples studied. The DTs of laboratory samples were 140 min and 560 min for initial concentrations of 1.9 × 10(7) CFU/mL and 42 CFU/mL at 44.5 °C. Moreover, the DTs for GUS assays were further shortened by induction with methyl β-D-glucuronide sodium salt (MetGlu). The quantitative relationship between DTs and initial E. coli concentrations established from replicate laboratory sample assays allowed estimation of the E. coli concentration in environmental samples, but with approximately 100 min of lag time. The lag time was also observed with E. coli samples that were prepared by starving cells in a laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.08.051DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
microbial fuel
8
fuel cell
8
e coli
8
mfc reactor
8
e coli samples
8
lag time
8
detection
6
fast detection
4
detection quantification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!