This study presents results of quantitative pathogen detection by real-time PCR (qPCR) and phase-specific serology for complete Q fever diagnostics. For this, samples of 42 goats in total were taken during a Q fever outbreak. In the early phase of the Q-fever infection, 10(4)-10(8)Coxiella (C.) burnetii pathogens per vaginal swab and 10(2)-10(6)C. burnetii per ml milk were detected using quantitative real-time PCR (qPCR). Pathogen excretion decreased continuously within two months to less than 10(4) (vaginal swab) and 10(2) (milk) C. burnetii. At the end of the study there was a shift toward a 10 fold higher excretion of the pathogen via the genital tract and milk. At the start of the study, serological tests showed a dominance of the phase-2 antibody in 76% (22/29) of the goats in the MONA- (Multiple of Normal Activity) ELISA and 79% (23/29) in the IDEXX-ELISA, which was replaced by a phase-1 dominance in 85% (29/34) and 62% (21/34), of the animals respectively at the end of the study. Serum samples from 13 goats before lambing that excreted C. burnetii after lambing showed antibodies against phase 2 of 100% using MONA-ELISA and 77% in the IDEXX-ELISA. The most important diagnostic instrument for Q-fever infection in goats following birth is testing of vaginal swabs using qPCR. Phase-specific serology allows an estimation of possible pathogen excretion even before birth, as well as achieving valuable results for determination of the infection phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2013.09.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!