Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

J Cyst Fibros

EA7293, Vascular and Tissular Stress in Transplantation, Federation of Translational Medicine of Strasbourg, Faculty of Medicine, University of Strasbourg, 74 route du Rhin, F-67401 Illkirch, Strasbourg, France; Department of Diabetology, University Hospital, 1 place de l'Hôpital, CHU de Strasbourg, BP421, 67091 Strasbourg Cedex, France. Electronic address:

Published: March 2014

Background: Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF.

Methods: MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172.

Results: Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion.

Conclusions: During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcf.2013.08.012DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
rin-m5f cells
12
nf-κb activation
12
cells
10
endocrine dysfunction
8
cystic fibrosis
8
exocrine mps
8
endocrine normal
8
lysosomal activity
8
cftr inhibition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!