Striated rootlet and nonfilamentous forms of rootletin maintain ciliary function.

Curr Biol

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

Published: October 2013

Primary cilia are microtubule-based sensory organelles whose structures and functions must be actively maintained throughout animal lifespan to support signal transduction pathways essential for development and physiological processes such as vision and olfaction [1]. Remarkably, few cellular components aside from the intraflagellar transport (IFT) machinery are implicated in ciliary maintenance [2]. Rootletin, an evolutionarily conserved protein found as prominent striated rootlets or a nonfilamentous form, both of which are associated with cilium-anchoring basal bodies, represents a likely candidate given its well-known role in preventing ciliary photoreceptor degeneration in a mouse model [3, 4]. Whether rootletin is universally required for maintaining ciliary integrity, and if so, by what mechanism, remains unresolved. Here, we demonstrate that the gene disrupted in the previously isolated C. elegans chemosensory mutant che-10 encodes a rootletin ortholog that localizes proximally and distally to basal bodies of cilia harboring or lacking conspicuous rootlets. In vivo analyses reveal that CHE-10/rootletin maintains ciliary integrity partly by modulating the assembly, motility, and flux of IFT particles, which are critical for axoneme length control. Surprisingly, CHE-10/rootletin is also essential for stabilizing ciliary transition zones and basal bodies, roles not ascribed to IFT. Unifying these findings, we provide evidence that the underlying molecular defects in the che-10 mutant stem from disrupted organization/function of the periciliary membrane, affecting the efficient delivery of basal body-associated and ciliary components and resulting in cilium degeneration. Together, our cloning and functional analyses of C. elegans che-10 provide the first mechanistic insights into how filamentous and nonfilamentous forms of rootletin play essential roles in maintaining ciliary function in metazoans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2013.08.033DOI Listing

Publication Analysis

Top Keywords

basal bodies
12
nonfilamentous forms
8
forms rootletin
8
ciliary
8
ciliary function
8
maintaining ciliary
8
ciliary integrity
8
rootletin
5
striated rootlet
4
rootlet nonfilamentous
4

Similar Publications

Induction of Erythropoietin by dietary Medium-Chain Triacylglycerol in Humans.

Am J Physiol Endocrinol Metab

January 2025

The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations, however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid (MCFA)-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 () are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of -PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of -PD cases do not have Lewy-related pathology.

View Article and Find Full Text PDF

Genetic studies on the protist, provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify , a Polo kinase of , that serves as an important factor driving global, circumferential pattern.

View Article and Find Full Text PDF

Thermodynamic Assessment of the Causes of the Death of the People Under the Debris in an Earthquake.

Disaster Med Public Health Prep

January 2025

Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.

Mortality rate of the crush victims in the Marmara earthquake of August 1999 was compared with the conclusions arrived after making thermodynamic assessment of the data acquired in the previous earthquakes. Entropic age concept was found very helpful while assessing the data. Mortality rate in the age group of 0-9 years old crush victims was 0 because the basal metabolic rate (BMR) of these children was low.

View Article and Find Full Text PDF

Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease with a characteristic pathological feature of eosinophilic hyaluronan inclusions in the nervous system and internal organs. The identification of GGC-repeat expansions in the Notch 2 N-terminal like C (NOTCH2NLC) gene facilitates the accurate diagnosis of NIID. Due to its rareness and high clinical heterogeneity, the diagnosis of NIID is often delayed or missed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!