Nuclear hormone receptors (NRs) are major targets for pharmaceutical development. Many experiments demonstrate that their C-terminal Helix (H12) is more flexible in the ligand-binding domains (LBDs) without ligand, this increased mobility being correlated with transcription repression and human diseases. Crystal structures have been obtained in which the H12 is extended, suggesting the possibility of large amplitude H12 motions in solution. However, these structures were interpreted as possible crystallographic artifacts, and thus the microscopic nature of H12 movements is not well known. To bridge the gap between experiments and molecular models and provide a definitive picture of H12 motions in solution, extensive molecular dynamics simulations of the peroxisome proliferator-activated receptor-γ LBD, in which the H12 was bound to a fluorescent probe, were performed. A direct comparison of the modeled anisotropy decays to time-resolved fluorescence anisotropy experiments was obtained. It is shown that the decay rates are dependent on the interactions of the probe with the surface of the protein, and display little correlation with the flexibility of the H12. Nevertheless, for the probe to interact with the surface of the LBD, the H12 must be folded over the body of the LBD. Therefore, the molecular mobility of the H12 should preserve the globularity of the LBD, so that ligand binding and dissociation occur by diffusion through the surface of a compact receptor. These results advance the comprehension of both ligand-bound and ligand-free receptor structures in solution, and also guide the interpretation of time-resolved anisotropy decays from a molecular perspective, particularly by the use of simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791304 | PMC |
http://dx.doi.org/10.1016/j.bpj.2013.07.032 | DOI Listing |
J Phys Chem B
January 2025
OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, Maryland 20877, United States.
We have previously found that the presence of an H-type excitonic dimer formed by two fluorophores covalently bound to an oligonucleotide allows the delivery of such a polymer into live cells without inducing toxicity. We are now using time-resolved fluorescence measurements in solution to understand the molecular dynamics of an antisense probe and how pairing with complementary sense strands of various lengths and degrees of complementarity affects the antisense strand's properties. We report that a DNA strand composed of 30 residues and labeled with an H-type excitonic Cyanine-5/Cyanine-5 dimer shows a predominant 1.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
Although nitrene chemistry is promising for the light-induced modification of organic compounds, the reactivity of large polycyclic aromatic compounds and the effects of their curvature remain unexplored. Irradiation of azidocorannulene () in methanol/acetonitrile followed by HCl addition produced diastereomers and . Azirine is apparently trapped by methanol to form diastereomeric acetal derivatives that are hydrolyzed with HCl to yield and '.
View Article and Find Full Text PDFSoft Matter
December 2024
Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
Inorg Chem
December 2024
Department of Chemistry, University of California, Berkeley, California 94720, United States.
The construction of multinuclear lanthanide-based molecules with significant magnetic exchange interactions represents a key challenge in the realization of single-molecule magnets with high operating temperatures. Here, we report the synthesis and magnetic characterization of two series of heterobimetallic compounds, (Cp*Ln)(μ-Co(pdt)) (Ln = Y, Gd, Dy; pdt = 1,2-diphenylethylenedithiolate) and [K(18-crown-6)][(Cp*Ln)(μ-Co(pdt))] (Ln = Y, Gd), featuring two lanthanide centers bridged by a cobalt bis(1,2-dithiolene) complex. Dc magnetic susceptibility data collected for the Gd congeners indicate significant Gd-Co ferromagnetic exchange interactions with fits affording = +11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!