Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release.

Mater Sci Eng C Mater Biol Appl

Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600020, India.

Published: December 2013

Formulation of biodegradable collagen-poly-ε-caprolactone (PCL) based biomaterials for the sustained release of insulin is the main objective of the present work. PCL has been employed to modulate the physico-chemical behavior of collagen to control the drug release. Designed formulations were employed to statistically optimize insulin release parameter profile at different collagen to PCL molar ratios. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to investigate the effect of PCL on hydration dynamics of the collagen molecule, which in turn changes the dissolution parameters of the drug from the systems. Drug entrapment efficiency has been found to be maximum for collagen to PCL molar ratio of 1:2 (>90%). In vitro dissolution test reveals that 99% of the drug was released from composite at collagen to PCL molar ratio of 1:3 and 1:4 within 2h, which indicates that hydrophobicity of the matrix results in weak interaction between lipophilic drug and carrier materials. The least burst release was observed for collagen to PCL molar ratio at 1:2 as synergistic interactions between collagen and PCL was maximum at that particular polymer-polymer ratios. The drug release data indicates super case-II transport of drug (n>1.0).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2013.07.020DOI Listing

Publication Analysis

Top Keywords

collagen pcl
20
pcl molar
16
drug release
12
molar ratio
12
collagen
8
drug
8
pcl
8
release
6
influence pcl
4
pcl material
4

Similar Publications

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

Introduction And Hypothesis: Pelvic organ prolapse (POP) impacts women's health and quality of life. Post-surgery complications can be severe. This study uses rat models to replicate sacrocolpopexy and test materials for pelvic support, verifying the 4-week postoperative mortality rate, the mechanical properties of the mesh tissue, and the collagen content.

View Article and Find Full Text PDF

Silk and polycaprolactone (PCL), derived from natural and synthetic sources, respectively, are suture materials commonly used in surgery. Beyond their application in sutures, they are also compelling subjects in regenerative medicine and tissue engineering. This study evaluated the effects of degummed silk microfibers compared to electrospun PCL microfibers of a similar diameter on chondrocyte behavior.

View Article and Find Full Text PDF

High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response.

Toxicol Rep

June 2025

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.

High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks.

View Article and Find Full Text PDF

The Efficacy of Heparin and Nitroglycerin in Managing Vascular Embolism Complications from Polycaprolactone (PCL) Fillers: A Clinical Study.

Aesthetic Plast Surg

January 2025

Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Shanghai, 200092, China.

Background: The use of PCL fillers has increased due to their long-lasting effects and collagen stimulation properties. However, managing vascular embolisms caused by PCL fillers is challenging due to the inability to dissolve them quickly. This study builds upon our previous findings from animal studies, which provided valuable insights into the management of PCL-related vascular complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!