Enzymatic transamination of pyridoxamine in tobacco plants.

Plant Sci

Key Laboratory of Tea Biochemistry & Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, People's Republic of China; Center for Cell and Gene Therapy, Takara Bio Inc., Seta 3-4-1, Otsu, Shiga 520-2193, Japan.

Published: November 2013

Vitamin B6 (VB6) comprises a group of pyridine compounds that are involved in a surprisingly high diversity of biochemical reactions. Humans and animals depend largely on plants for their VB6 nutrition. Many studies have focused on biosynthesis of VB6 and comparatively little is known about VB6 metabolic conversion in plants. Recently, we have found that an efficient conversion pathway between pyridoxal (PL) and pyridoxamine (PM) is present in tobacco, but the catalytic enzyme remains an unsolved mystery. In this study, enzymes catalyzing the transamination of PM were purified from tobacco leaves and characterized. Our results suggest that a specific PM-pyruvate aminotranferase dominates the reversible transamination of PM in tobacco, and also show that the apo form of glutamic-oxaloacetic aminotranferase from tobacco, but not the holoenzyme, is able to catalyze the analogous transamination reaction between PM and either oxaloacetate or α-ketoglutarate. PM-pyruvate aminotranferase is involved in a degradation pathway for VB6 compounds in bacteria. Therefore, our study raises questions about whether the degradation pathway of VB6 exists in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2013.08.001DOI Listing

Publication Analysis

Top Keywords

pyridoxamine tobacco
8
pm-pyruvate aminotranferase
8
degradation pathway
8
pathway vb6
8
vb6
6
tobacco
5
enzymatic transamination
4
transamination pyridoxamine
4
plants
4
tobacco plants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!