Individual boron nanowire has ultra-high specific Young's modulus and fracture strength as revealed by in situ transmission electron microscopy.

ACS Nano

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong ProvinceKey Laboratory of Display Material and Technology, and School of Physics and Engineering, SunYat-sen University, Guangzhou 510275, PR China.

Published: November 2013

Boron nanowires (BNWs) may have potential applications as reinforcing materials because B fibers are widely known for their excellent mechanical performance. However until now, there have been only few reports on the mechanical properties of individual BNW, and in situ transmission electron microscopy (TEM) investigations shining a light on their fracture mechanism have not been performed. In this paper, we applied in situ high-resolution TEM (HRTEM) technique to study the mechanical properties of individual BNWs using three loading schemes. The mean fracture strength and the maximum strain of individual BNWs were measured to be 10.4 GPa and 4.1%, respectively, during the tensile tests. And the averaged Young's modulus was calculated to be 308.2 GPa under tensile and compression tests. Bending experiments for the first time performed on individual BNWs revealed that their maximum bending strain could reach 9.9% and their ultimate bending stress arrived at 36.2 GPa. These figures are much higher than those of Si and ZnO nanowires known for their high bending strength. Moreover, the BNWs exhibited very high specific fracture strength (3.9 (GPa·cm(3))/g) and specific elastic modulus (130.6 (GPa·cm(3))/g), which are several dozens of times larger compared to many nanostructures known for their superb mechanical behaviors. At last, the effect of surface oxide layer on the Young's modulus, fracture strength and maximum bending strength of individual BNWs was elucidated to extract their intrinsic mechanical parameters using calculated corrections. All experimental results suggest that the present BNW are a bright promise as lightweight reinforcing fillers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn404316aDOI Listing

Publication Analysis

Top Keywords

fracture strength
16
individual bnws
16
young's modulus
12
modulus fracture
8
situ transmission
8
transmission electron
8
electron microscopy
8
mechanical properties
8
properties individual
8
strength maximum
8

Similar Publications

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

Background: Ankle fractures continue to increase in incidence and severity in an older, more challenging geriatric population. Medial malleolus fixation with partially threaded cancellous 4.0-mm screws, a common fixation method, has been shown to fail due to pullout strength.

View Article and Find Full Text PDF

Background: Distal biceps tendon rupture is an injury that causes a significant reduction in strength and endurance. Combined cortical button and interference screw fixation has been utilized via single-incision technique. There are limited data describing this technique utilizing a double-incision approach.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

The effect of SiC and YO inclusion on microstructure and mechanical properties of Al 5052 composite fabricated through Friction Stir Process.

Heliyon

January 2025

AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.

A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!