We observe narrow band pairs of time-correlated photons of wavelengths 776 and 795 nm from nondegenerate four-wave mixing in a laser-cooled atomic ensemble of ^{87}Rb using a cascade decay scheme. Coupling the photon pairs into single mode fibers, we observe an instantaneous rate of 7700 pairs per second with silicon avalanche photodetectors, and an optical bandwidth below 30 MHz. Detection events exhibit a strong correlation in time [g((2))(τ = 0) ≈ 5800] and a high coupling efficiency indicated by a pair-to-single ratio of 23%. The violation of the Cauchy-Schwarz inequality by a factor of 8.4 × 10(6) indicates a strong nonclassical correlation between the generated fields, while a Hanbury Brown-Twiss experiment in the individual photons reveals their thermal nature. The comparison between the measured frequency bandwidth and 1/e decay time of g((2)) indicates a transform-limited spectrum of the photon pairs. The narrow bandwidth and brightness of our source makes it ideal for interacting with atomic ensembles in quantum communication protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.123602DOI Listing

Publication Analysis

Top Keywords

photon pairs
12
narrow band
8
four-wave mixing
8
atomic ensemble
8
pairs
5
band source
4
source transform-limited
4
transform-limited photon
4
pairs four-wave
4
mixing cold
4

Similar Publications

Three-dimensional subcellular imaging is essential for biomedical research, but the diffraction limit of optical microscopy compromises axial resolution, hindering accurate three-dimensional structural analysis. This challenge is particularly pronounced in label-free imaging of thick, heterogeneous tissues, where assumptions about data distribution (e.g.

View Article and Find Full Text PDF

Quantum ghost imaging (QGI) leverages correlations between entangled photon pairs to reconstruct an image using light that has never physically interacted with an object. Despite extensive research interest, this technique has long been hindered by slow acquisition speeds, due to the use of raster-scanned detectors or the slow response of intensified cameras. Here, we utilize a single-photon-sensitive time-stamping camera to perform QGI at ultra-low-light levels with rapid data acquisition and processing times, achieving high-resolution and high-contrast images in under 1 min.

View Article and Find Full Text PDF

Photon-Counting CT Effects on Sensitivity for Liver Lesion Detection: A Reader Study Using Virtual Imaging.

Radiology

January 2025

From the Department of Radiology, Duke University Hospital, 2301 Erwin Rd, Box 3808, Durham, NC 27701 (B.W.T., K.R.K., B.C.A., S.P.T., D.E.K., B.H., M.R.B., D.M., E.S., E.A.); Department of Biostatistics and Bioinformatics (N.F., S.M., A.E.) and Department of Medical Physics (W.P.S., E.S., E.A.), Duke University, Durham, NC.

Background Detection of hepatic metastases at CT is a daily task in radiology departments that influences medical and surgical treatment strategies for oncology patients. Purpose To compare simulated photon-counting CT (PCCT) with energy-integrating detector (EID) CT for the detection of small liver lesions. Materials and Methods In this reader study (July to December 2023), a virtual imaging framework was used with 50 anthropomorphic phantoms and 183 generated liver lesions (one to six lesions per phantom, 0.

View Article and Find Full Text PDF

All-angle unidirectional flat-band acoustic metasurfaces.

Nat Commun

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.

Flat bands have empowered novel phenomena such as robust canalization with strong localization, high-collimation and low-loss propagation. However, the spatial symmetry protection in photonic or acoustic lattices naturally forces flat bands to manifest in pairs aligned at an inherently specific angle, resulting in a fixed bidirectional canalization. Here, we report an acoustic flat-band metasurface, allowing not only unidirectional canalization at all in-plane angles but also robust tunability in band alignment.

View Article and Find Full Text PDF

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!