AI Article Synopsis

  • Scientists discovered a way to see a single Ce(3+) ion in a special crystal called YAG, and they looked at its magnetic and light properties.
  • They found that they could control the energy state of this ion using a specific type of laser light.
  • By watching how the ion glows after being excited, they were able to connect the ion's spin (a tiny magnetic property) with the light it emits, creating a link between the ion and a single particle of light (photon).

Article Abstract

We report on optical detection of a single photostable Ce(3+) ion in an yttrium aluminium garnet (YAG) crystal and on its magneto-optical properties at room temperature. The spin quantum state of the emitting level of a single cerium ion in YAG can be initialized by a circularly polarized laser pulse. Coherent precession of the electron spin is read out by observing temporal behavior of circularly polarized fluorescence of the ion. This implies direct mapping of the spin quantum state of Ce(3+) ion onto the polarization state of the emitted photon and represents the quantum interface between a single spin and a single photon.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.120502DOI Listing

Publication Analysis

Top Keywords

mapping spin
8
single photon
8
polarization state
8
ce3+ ion
8
spin quantum
8
quantum state
8
circularly polarized
8
single
6
ion
5
spin coherence
4

Similar Publications

Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.

View Article and Find Full Text PDF

Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.

View Article and Find Full Text PDF

Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.

View Article and Find Full Text PDF

Spin Hall nano-oscillators convert DC to magnetic auto-oscillations in the microwave regime. Current research on these devices is dedicated to creating next-generation energy-efficient hardware for communication technologies. Despite intensive research on magnetic auto-oscillations within the past decade, the nanoscale mapping of those dynamics remained a challenge.

View Article and Find Full Text PDF

χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation.

Hum Brain Mapp

February 2025

Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.

Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!