Tumor invasion is the outcome of a complex interplay between cancer cells and the stromal environment and requires the infiltration of a dense, cross-linked meshwork of collagen type I extracellular matrix. We use a membrane-free single-cell and spheroid-based complementary model to study cancer invasion through native collagen type I matrices. Cell morphology is preserved during the assays allowing real-time monitoring of invasion-induced changes in cell structure and F-actin organization. Combination of these models with computerized quantification permits the calculation of highly reproducible and operator-independent data. These assays are versatile in the use of fluorescent probes and have a flexible kinetic endpoint. Once the optimal experimental conditions are empirically determined, the collagen type I invasion assays can be used for preclinical validation of small-molecule inhibitors targeting invasion. Initiation and monitoring of the single-cell and spheroid invasion model can be achieved in 8 h (over 3 days) and in 14 h (over 5 days), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-8244-4_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!