The growth of films of [H2B(pz)2]Fe(ii)(bpy) on Au(111) is characterized from the bilayer film to multilayer film regime. Scanning tunneling microscopy shows a transition from a well-ordered, uniform bilayer film to a poorly-ordered film at larger thicknesses. Previous local tunneling spectroscopy and conductance mapping in bilayer films permit the identification of coexisting molecular spin-states at all temperatures. New ultraviolet photoelectron spectroscopy is consistent with this picture and in agreement with the density of states calculated by density functional theory. In thicker films with a polycrystalline morphology, evidence for a more bulk-like change in spin composition as a function of temperature is obtained by observing the reduction in intensity of Fe 2p core level satellites in X-ray photoelectron spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cc44904a | DOI Listing |
Langmuir
January 2025
State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, P. R. China.
Implantable cardiovascular devices have revolutionized the treatment of cardiovascular diseases, yet their long-term functionality without causing thrombosis is a persistent challenge. Although the surface modification of anticoagulant coating has greatly improved the biocompatibility of the devices, its long-term stability in complex physiological environments still remains questionable. Herein, the stability of three anticoagulant hydrogel coatings, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(sodium 2-acryloyl-2-methylpropanesulfonate) (PAMPS), and poly(4-styrenesulfonate sodium) (PSS), is studied.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.
View Article and Find Full Text PDFLangmuir
January 2025
Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.
The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
Extreme ultraviolet (EUV) lithography has enabled significant reductions in device dimensions but is often limited by capillary force-driven pattern collapse in conventional wet processes. Recent dry-development approaches, while promising, frequently require toxic etchants or specialized equipment, limiting their broader applicability and highlighting the need for more sustainable, cost-effective alternatives. In this study, highly reactive, etchant-free dry-developable EUV photoresists using N-heterocyclic carbene (NHC)-based metal-ligand complexes, achieving half-saturation at EUV doses of 8.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!