Structural investigation of ionic liquid/rubrene single crystal interfaces by using frequency-modulation atomic force microscopy.

Chem Commun (Camb)

Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

Published: November 2013

Frequency-modulation atomic force microscopy (FM-AFM) was employed to reveal the structural properties of a rubrene single crystal immersed in an ionic liquid. We found large vacancies formed by the anisotropic dissolution of rubrene molecules. Molecular resolution imaging revealed that structures of FM-AFM images deviated from the bulk-terminated structure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc45338cDOI Listing

Publication Analysis

Top Keywords

single crystal
8
frequency-modulation atomic
8
atomic force
8
force microscopy
8
structural investigation
4
investigation ionic
4
ionic liquid/rubrene
4
liquid/rubrene single
4
crystal interfaces
4
interfaces frequency-modulation
4

Similar Publications

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Serendipitous Discovery of Dearomatized Dimers in Anthracene Derivative Oxidation.

Org Lett

January 2025

Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.

We present the serendipitous discovery of an unusual dimer formed from anthracene-derived polyarenes. Unlike the typical oxidative coupling of substituted aromatic scaffolds, the reaction yielded a dearomatized enone dimer as the sole product. This dearomatized motif, notably, does not undergo the commonly observed rearomatization, and no biaryl products were detected.

View Article and Find Full Text PDF

Cyanoacetylene and dicyanoacetylene react in the ternary methylation system CHF/SbF/SO under the formation of its corresponding -monomethylated and -dimethylated species, respectively. Additionally, in the case of dicyanoacetylene, an -dimethylated HF-addition product was obtained. The salts were characterized by low-temperature vibrational spectroscopy.

View Article and Find Full Text PDF

Lignan-phloroglucinol hybrids with an unprecedented beadlike core from the leaves of .

Org Biomol Chem

January 2025

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

(±)-Melichuniiones A and B (1 and 2), two novel enantiomeric pairs of lignan-phloroglucinol hybrids with an unprecedented beadlike core were isolated from the leaves of , together with new analogues 3-6. Compounds 1 and 2 possess a unique dispiro [furan-2,5'-cyclopenta[]furan-2',3''-furan] 5/5/5/5 tetracyclic skeleton. Their structures were established by extensive spectroscopic analyses, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations.

View Article and Find Full Text PDF

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!