We report on a cartridge based platform for complex immunoassay formats that allows for flexible adaption of individual steps. It is a sample-to-answer system which is quantitative as well as sensitive. The target molecules are detected through a magnetic bead-based fluorescence sandwich immunoassay. The beads both constitute the solid phase for immobilizing capture molecules and are used for magnetic field activated incubation. The injection molded cartridge comprises several chambers separated by capillary valves. Chambers contain the assay reagents, through which the beads are manipulated via externally applied magnetic fields. Active incubation is made possible by assembling the beads into microstirrers and systematically scanning through a chamber. The beads are transported by focusing them to form an aggregate which subsequently is dragged through the valves. Once the aggregate enters a chamber, it is re-dispersed and magnetic actuation is used to re-assemble the beads into microstirrers. The assay protocol involves an incubation of sample with antibody coated magnetic beads, followed by steps for washing or separation, labeling with fluorescent detection antibody and finally fluorescence detection. An interleukin-8 assay served as a model for evaluating the system and a concentration as low as 5 pg/mL (0.625 pM) was successfully detected. The platform shows potential to be developed into a diagnostic tool to be used in a point-of-care testing (PoCT) environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-013-9816-2DOI Listing

Publication Analysis

Top Keywords

solid phase
8
cartridge based
8
beads microstirrers
8
beads
6
magnetic
5
moving solid
4
phase platform
4
platform technology
4
technology cartridge
4
based sandwich
4

Similar Publications

Emerging 0D Hybrid Metal Halide Luminescent Glasses.

Adv Mater

January 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.

0D hybrid metal halide (HMH) luminescent glasses have garnered significant attentions for its chemical diversity in optoelectronic applications and it also retains the skeleton connectivity and coordination mode of the crystalline counterparts while exhibiting various physics/chemistry characteristics distinct from the crystalline states. However, understanding of the glass-forming ability and the specific structural origins underpinning the luminescent properties of 0D HMH glasses remains elusive. In this review, it is started from the solid-liquid phase transition and thermodynamic analysis of 0D HMHs formed through melt-quenching, and summarize the current compounds capable of stably forming glassy phases via chemical structural design.

View Article and Find Full Text PDF

Objectives: Gastroparesis is a complication following lung transplantation. This study aimed to assess the prevalence of gastroparesis in patients with lung transplants undergoing solid phase gastric emptying scintigraphy (GES). Specifically, we investigated which type of lung transplant is more susceptible to gastroparesis and whether timing of GES post-transplantation impacts diagnosis of severe gastroparesis.

View Article and Find Full Text PDF

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

Environ Sci Technol

January 2025

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

Article Synopsis
  • Immobilized carbonic anhydrase (CA) enhances CO absorption in potassium carbonate (PC) solutions, presenting a viable alternative to traditional amine-based carbon capture methods.
  • The study developed cross-scale models to assess how different enzyme immobilization materials—ranging from nanoparticle to macro-scale carriers—affect CO absorption rates, finding that nanoscale carriers are most effective.
  • While increasing enzyme activity can boost absorption rates, diffusion limits, particularly in the liquid phase, impose an upper limit to this enhancement, and smaller particle sizes below 0.35 μm significantly improve performance over benchmark solutions.
View Article and Find Full Text PDF

Recycled calcium polypeptides modulate microbial dynamics and enhance bioconversion in kitchen waste-garden waste co-composting system.

J Environ Manage

December 2024

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH, NO, NH, and HS by 52.

View Article and Find Full Text PDF

The poly(vinylidene fluoride) (PVDF) has been deemed as an appealing matrix for solid polymer electrolytes due to its wide electrochemical window and excellent thermal stability. Further incorporation with garnet filler endows PVDF-based electrolyte with increased ionic conductivity and mechanical strength. However, the spontaneous formation of alkaline layer containing LiOH/LiCO on garnet surface cannot be neglected, concerning its low ionic conductivity combined with the destructive effect on electrochemical performance of PVDF-based composite electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!