A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Outer membrane vesicles reflect environmental cues in Gallibacterium anatis. | LitMetric

Outer membrane vesicles reflect environmental cues in Gallibacterium anatis.

Vet Microbiol

Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.

Published: December 2013

The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in egg-laying chickens, leading to decreased egg-production worldwide. Increased knowledge of the pathogenesis and virulence factors is important to better understand and prevent the negative effects of G. anatis. To this end outer membrane vesicles (OMVs) are natural secretion products of Gram-negative bacteria, displaying an enormous functional diversity and promising results as vaccine candidates. This is the first study to report that G. anatis secretes OMVs during in vitro growth. By use of transmission electron microscopy (TEM) and SDS-PAGE, we showed that changes in in vitro growth conditions, including incubation time, media composition and temperature, affected the OMV production and protein composition. A large protein band was increased in its concentration after prolonged growth. Analysis by LC-MS/MS indicated that the band contained two proteins; the 320.1 kDa FHA precursor, FhaB, and a 407.8 kDa protein containing a von Willebrand factor type A (vWA) domain. Additional two major outer-membrane (OM) proteins could be identified in all samples; the OmpH-homolog, OmpC, and OmpA. To understand the OMV formation better, a tolR deletion mutation (ΔtolR) was generated in G. anatis. This resulted in a constantly high and growth-phase independent production of OMVs, suggesting that depletion of peptidoglycan linkages plays a role in the OMV formation in G. anatis. In conclusion, our results show that G. anatis produce OMVs in vitro and the OMV protein profile suggests that the production is an important and well-regulated ability employed by the bacteria, which may be used for vaccine production purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2013.09.005DOI Listing

Publication Analysis

Top Keywords

outer membrane
8
membrane vesicles
8
gallibacterium anatis
8
omvs vitro
8
vitro growth
8
omv formation
8
anatis
7
vesicles reflect
4
reflect environmental
4
environmental cues
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!