Noise is inherent to single cell behavior. Its origins can be traced to the stochasticity associated with a few copies of genes and low concentrations of protein and ligands. We have studied the mechanisms by which the response of noisy elements can be entrained for biological signal processing. To elicit predictable biological function, we have engineered a gene environment that incorporates a gene regulatory network with the stringently controlled microenvironment found in a synthetic biofilm. The regulatory network leverages the positive feedback found in quorum-sensing regulatory components of the lux operon, which is used to coordinate cellular responses to environmental fluctuations. Accumulation of the Lux receptor in cells, resulting from autoregulation, confers a rapid response and enhanced sensitivity to the quorum-sensing molecule that is retained after cell division as epigenetic memory. The memory of the system channels stochastic noise into a coordinated response among quorum-sensing signal receivers in a synthetic biofilm in which the noise diminishes with repeated exposure to noisy transmitters on the input of a signaling cascade integrated into the same biofilm. Thus, gene expression in the receivers, which are autonomous and do not communicate with each other, is synchronized to fluctuations in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/sb400052fDOI Listing

Publication Analysis

Top Keywords

synthetic biofilm
12
regulatory network
8
biological noise
4
noise abatement
4
abatement coordinating
4
coordinating responses
4
responses autonomous
4
autonomous bacteria
4
bacteria synthetic
4
biofilm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!