Adenosine receptors have been considered as potential targets for drug development, but one of the main obstacles to this goal is to selectively inhibit one receptor subtype over the others. This subject is particularly crucial for adenosine A2b receptor antagonists (AdoRA2B). The structure–activity relationships of xanthine derivatives which are AdoRA2B have been comprehensively investigated, but the steric and electronic requirements of deazaxanthine AdoRA2B have not been described from a quantitative standpoint of view. Herein we report our efforts to shorten this knowledge gap through 2D-QSAR (HQSAR) and 3D-QSAR (CoMFA) approaches. The good statistical quality (HQSAR--r(2) = 0.85, q(2)(LOO) = 0.77; CoMFA – r(2) = 0.86, q(2) = 0.70) and predictive ability (r(2) = (pred1) = 0.78, r(2)(pred2) = 0.78 and r(2) = (pred1) = 0.70, r(2) = (pred2) = 0.70,respectively) of the models, along with the information provided by contribution and contour maps hints their usefulness to the design of more potent 9-deazaxanthine derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14756366.2013.830113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!