Employing high-yield production of layered materials by liquid-phase exfoliation, molybdenum disulfide (MoS2) dispersions with large populations of single and few layers were prepared. Electron microscopy verified the high quality of the two-dimensional MoS2 nanostructures. Atomic force microscopy analysis revealed that ~39% of the MoS2 flakes had thicknesses of less than 5 nm. Linewidth and frequency difference of the E(1)2g and A1g Raman modes confirmed the effective reduction of flake thicknesses from the bulk MoS2 to the dispersions. Ultrafast nonlinear optical (NLO) properties were investigated using an open-aperture Z-scan technique. All experiments were performed using 100 fs pulses at 800 nm from a mode-locked Ti:sapphire laser. The MoS2 nanosheets exhibited significant saturable absorption (SA) for the femtosecond pulses, resulting in the third-order NLO susceptibility Imχ((3)) ~ 10(-15) esu, figure of merit ~10(-15) esu cm, and free-carrier absorption cross section ~10(-17) cm(2). Induced free carrier density and the relaxation time were estimated to be ~10(16) cm(-3) and ~30 fs, respectively. At the same excitation condition, the MoS2 dispersions show better SA response than the graphene dispersions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn403886tDOI Listing

Publication Analysis

Top Keywords

mos2 dispersions
12
saturable absorption
8
two-dimensional mos2
8
mos2 nanosheets
8
mos2
7
ultrafast saturable
4
absorption two-dimensional
4
nanosheets employing
4
employing high-yield
4
high-yield production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!