Chemical modifications of peptide sequences via S-alkylation reaction.

Org Lett

Institute of Biostructures and Bioimaging, National Research Council , 80134 Naples, Italy , and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States.

Published: October 2013

A chemoselective, convenient, and mild synthetic strategy to modify peptides on a cysteine sulfhydryl group is described. It simply requires activated molecular sieves to selectively promote S-alkylation in the presence of peptide nucleophilic functionalities. The procedure is easy to perform, fast, and provides high yields even in the case of poor electrophilic groups. Moreover, the method allows an efficient one-pot poly alkylation, proving that the sulfhydryl reactivity does not rely on its specific position within the peptide sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol402637dDOI Listing

Publication Analysis

Top Keywords

chemical modifications
4
modifications peptide
4
peptide sequences
4
sequences s-alkylation
4
s-alkylation reaction
4
reaction chemoselective
4
chemoselective convenient
4
convenient mild
4
mild synthetic
4
synthetic strategy
4

Similar Publications

Background: Knowledge of the chemical composition of amyloid plaques and tau tangles at the earlier stages of Alzheimer's disease (AD) pathology is sparse. This is due to limited access to human brain during life and at the earlier stages of AD pathophysiology and technical limitations in quantifying amyloid and tau species at a subcellular level. Understanding the chemical composition of plaques and tangles, how rapidly they grow and what factors drive growth is important for developing and refining therapeutics.

View Article and Find Full Text PDF

Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

Cationic Modification in Hybrid Iodates: A Pathway to Superior Performance.

Inorg Chem

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The utilization of nonlinear optical (NLO) crystals plays a crucial role in the contemporary laser industry, and the advancement of novel NLO-active units is essential for the exploration of NLO materials. Two novel organic-inorganic hybrid iodates, designated as (CNH)MoO(IO)·3HO () and (CNIH)MoO(IO)·4HO () were synthesized via mild hydrothermal methods, exhibiting band gaps of 3.75 and 3.

View Article and Find Full Text PDF

Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!