Spatial distribution of radioisotope concentrations in the offshore water and sediment of the Bay of Bengal (Indian Ocean), Bangladesh.

Isotopes Environ Health Stud

a Department of Animal Science and Fishery, Faculty of Agriculture and Food Sciences , Universiti Putra Malaysia, Campus Bintulu Sarawak, Bintulu , Sarawak , Malaysia.

Published: May 2015

Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10256016.2013.830613DOI Listing

Publication Analysis

Top Keywords

bay bengal
8
238u 232th
8
232th 40k
8
spatial distribution
4
distribution radioisotope
4
radioisotope concentrations
4
concentrations offshore
4
offshore water
4
sediment
4
water sediment
4

Similar Publications

The Indian coast has been experiencing an increase in algal bloom events over the decades. Owing to the regional and seasonal dynamics of algal biomass (proxy: chlorophyll-a, hereafter chl-a), a multitude of thresholds of chl-a has been defined for different parts of the global seas to determine algal bloom conditions. However, no such clear definition is given for the Indian coastal waters.

View Article and Find Full Text PDF

Mapping of water spread dynamics of a tropical Ramsar wetland of India for conservation and management.

Environ Monit Assess

January 2025

Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.

Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.

View Article and Find Full Text PDF

Animal translocations provide striking examples of the human footprint on biodiversity. Combining continental-wide genomic and DNA-barcoding analyses, we reconstructed the historical biogeography of the Asian black-spined toad (Duttaphrynus melanostictus), a toxic commensal amphibian that currently threatens two biodiversity hotspots through biological invasions (Wallacea and Madagascar). The results emphasize a complex diversification shaped by speciation and mitochondrial introgression that comprises two distinct species.

View Article and Find Full Text PDF
Article Synopsis
  • Brown algae show great potential as a nutritious food source with significant levels of protein, carbohydrates, and minerals that can help meet dietary needs.
  • Analysis of eight species from India's coasts revealed high amounts of essential minerals like calcium, iron, and magnesium, which contribute to the Recommended Dietary Allowance.
  • The study also found strong antioxidant properties in these algae, suggesting they may help reduce chronic disease risk and enhance overall health.
View Article and Find Full Text PDF

Potential Health Risks from Heavy Metal in Green Mussels (Perna Viridis) From the Southeastern Part of the Bay of Bengal.

Biol Trace Elem Res

January 2025

Department of Fisheries, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong, 4331, Bangladesh.

The Southeastern part of the Bay of Bengal is increasingly threatened by heavy metal pollution, posing significant risks to both aquatic life and human health. In this context, the contamination levels of six heavy metals-Cadmium (Cd), Lead (Pb), Zinc (Zn), Copper (Cu), Manganese (Mn), and Iron (Fe)-were assessed in the soft tissues of Green mussels (Perna viridis) from five key sites: Matamuhuri, Moheshkhali, Bakhkhali, Naf, and St. Martin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!