This paper deals with molecular simulation of the chemical potentials in aqueous electrolyte solutions for the water solvent and its relationship to chemical potential simulation results for the electrolyte solute. We use the Gibbs-Duhem equation linking the concentration dependence of these quantities to test the thermodynamic consistency of separate calculations of each quantity. We consider aqueous NaCl solutions at ambient conditions, using the standard SPC/E force field for water and the Joung-Cheatham force field for the electrolyte. We calculate the water chemical potential using the osmotic ensemble Monte Carlo algorithm by varying the number of water molecules at a constant amount of solute. We demonstrate numerical consistency of these results in terms of the Gibbs-Duhem equation in conjunction with our previous calculations of the electrolyte chemical potential. We present the chemical potential vs molality curves for both solvent and solute in the form of appropriately chosen analytical equations fitted to the simulation data. As a byproduct, in the context of the force fields considered, we also obtain values for the Henry convention standard molar chemical potential for aqueous NaCl using molality as the concentration variable and for the chemical potential of pure SPC/E water. These values are in reasonable agreement with the experimental values.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4821153DOI Listing

Publication Analysis

Top Keywords

chemical potential
28
gibbs-duhem equation
12
molecular simulation
8
chemical
8
water chemical
8
aqueous nacl
8
force field
8
potential
7
water
6
aqueous
4

Similar Publications

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

Atomic-Level Tin Regulation for High-Performance Zinc-Air Batteries.

J Am Chem Soc

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO (for OER) to enhance both ORR and OER performances.

View Article and Find Full Text PDF

Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes.

ACS Appl Mater Interfaces

January 2025

Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.

Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .

View Article and Find Full Text PDF

Modular Metabolic Engineering of for Enhanced Production of Ursolic Acid.

J Agric Food Chem

January 2025

State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Ursolic acid, a plant-derived pentacyclic triterpenoid with anti-inflammatory, antioxidant, and other bioactive properties, holds significant potential for use in nutritional supplements and drug development. However, its extraction from medicinal plants is inefficient due to low yield and dependence on seasonality and geography. Herein, we use modular metabolic engineering to enhance ursolic acid production in by dividing the biosynthetic pathway into five modules.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!