Viral structural proteins form the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nonstructural protein 2 (nsp2) as a novel structural component of the porcine reproductive and respiratory syndrome virus (PRRSV) particle. A set of custom α-nsp2 antibodies targeting conserved epitopes within four distinct regions of nsp2 (the PLP2 protease domain [OTU], the hypervariable domain [HV], the putative transmembrane domain [TM], and the C-terminal region [C]) were obtained commercially and validated in PRRSV-infected cells. Highly purified cell-free virions of several PRRSV strains were isolated through multiple rounds of differential density gradient centrifugation and analyzed by immunoelectron microscopy (IEM) and Western blot assays using the α-nsp2 antibodies. Purified viral preparations were found to contain pleomorphic, predominantly spherical virions of uniform size (57.9 nm ± 8.1 nm diameter; n = 50), consistent with the expected size of PRRSV particles. Analysis by IEM indicated the presence of nsp2 associated with the viral particle of diverse strains of PRRSV. Western blot analysis confirmed the presence of nsp2 in purified viral samples and revealed that multiple nsp2 isoforms were associated with the virion. Finally, a recombinant PRRSV genome containing a myc-tagged nsp2 was used to generate purified virus, and these particles were also shown to harbor myc-tagged nsp2 isoforms. Together, these data identify nsp2 as a virion-associated structural PRRSV protein and reveal that nsp2 exists in or on viral particles as multiple isoforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838290PMC
http://dx.doi.org/10.1128/JVI.02435-13DOI Listing

Publication Analysis

Top Keywords

nsp2
9
porcine reproductive
8
reproductive respiratory
8
respiratory syndrome
8
syndrome virus
8
multiple isoforms
8
nonstructural protein
8
α-nsp2 antibodies
8
western blot
8
purified viral
8

Similar Publications

Tracking cryptic SARS-CoV-2 hospital outbreak through quasispecies analysis.

Virol J

December 2024

Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy.

Background: Since the beginning of the pandemic, contact tracing has been one of the most relevant issues to understand SARS-CoV-2 transmission dynamics and, in this context, the analysis of quasispecies may turn out to be a useful tool for outbreak investigations. Analysis of the intra-host single nucleotide variants (iSNVs) found in the nsp2, ORF3, and ORF7 genes of SARS-CoV-2 was conducted in order to correctly identify virus transmission chain among patients hospitalized in Brescia Civic Hospital.

Methods: During the period between August and October 2023, 13 nasopharyngeal specimens, collected from patients admitted to Brescia Civic Hospital, were tested for SARS-CoV-2 positivity and molecularly characterized.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen that causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion of sows and the manifestation of respiratory diseases in piglets. PRRSV strains are categorized into two distinct genotypes: PRRSV-1 and PRRSV-2. PRRSV-2 can be further classified into several lineages, including sub-lineage 1.

View Article and Find Full Text PDF

Non-structural protein 2 (nsP2), which plays an essential role in replication of CHIKV, contains a protease, helicase, and methyltransferase-like domain. We executed a simple a screen using malachite green to detect compounds that decreased ATP hydrolysis and tested a library of diverse compounds to find inhibitors of CHIKV nsP2 helicase.

View Article and Find Full Text PDF

The potential inhibitory mechanism of EGCG against the Chikungunya virus targeting non-structural protein 2 through molecular dynamics simulation.

Sci Rep

November 2024

Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.

This study explores the potential of Indonesian herbal compounds against the chikungunya virus (CHIKV), which causes widespread illness without a specific cure known as chikungunya fever (CHIKF). By focusing on the nsP2 protein, crucial for the virus's replication, the research utilizes computational methods identifying inhibitor compounds with high binding affinity. These promising candidates are further analyzed through 1 µs of molecular dynamic (MD) simulation studies, aiming to find effective inhibitors to control the chikungunya spread, leveraging Indonesia's rich biodiversity for novel anti-CHIKV therapies.

View Article and Find Full Text PDF

RA-0003022 () was identified as a high-quality covalent chemical probe for nsP2 cysteine protease (nsP2pro). Isoxazole covalently captured the active site C478 and inactivated the enzyme with a / ratio of 6000 Ms. A negative control analog RA-0025453 () retained the covalent warhead but demonstrated >100-fold decrease in enzyme inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!