NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I.

J Biol Chem

From the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom.

Published: November 2013

Complex I (NADH ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 subunits. One arm is embedded in the inner membrane with the other protruding ∼100 Å into the matrix of the organelle. The extrinsic arm contains binding sites for NADH and the primary electron acceptor FMN, and it provides a scaffold for seven iron-sulfur clusters that form an electron pathway linking FMN to the terminal electron acceptor, ubiquinone, which is bound in the region of the junction between the arms. The membrane arm contains four antiporter-like domains, probably energetically coupled to the quinone site and involved in pumping protons from the matrix into the intermembrane space contributing to the proton motive force. Complex I is put together from preassembled subcomplexes. Their compositions have been characterized partially, and at least 12 extrinsic assembly factor proteins are required for the assembly of the complex. One such factor, NDUFAF7, is predicted to belong to the family of S-adenosylmethionine-dependent methyltransferases characterized by the presence in their structures of a seven-β-strand protein fold. In the present study, the presence of NDUFAF7 in the mitochondrial matrix has been confirmed, and it has been demonstrated that it is a protein methylase that symmetrically dimethylates the ω-N(G),N(G') atoms of residue Arg-85 in the NDUFS2 subunit of complex I. This methylation step occurs early in the assembly of complex I and probably stabilizes a 400-kDa subcomplex that forms the initial nucleus of the peripheral arm and its juncture with the membrane arm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829151PMC
http://dx.doi.org/10.1074/jbc.M113.518803DOI Listing

Publication Analysis

Top Keywords

ndufs2 subunit
8
electron acceptor
8
membrane arm
8
assembly complex
8
complex
6
arm
5
ndufaf7 methylates
4
methylates arginine
4
arginine ndufs2
4
subunit human
4

Similar Publications

The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown.

View Article and Find Full Text PDF

Using Gaussian accelerated molecular dynamics combined with Markov state models to explore the mechanism of action of new oral inhibitors on Complex I.

Comput Biol Med

July 2024

Edmond H. Fischer Signal Transduction Laboratory and Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China. Electronic address:

In this study, our focus was on investigating H-1,2,3-triazole derivative HP661 as a novel and highly efficient oral OXPHOS inhibitor, with its molecular-level inhibitory mechanism not yet fully understood. We selected the ND1, NDUFS2, and NDUFS7 subunits of Mitochondrial Complex I as the receptor proteins and established three systems for comparative analysis: protein-IACS-010759, protein-lead compound 10, and protein-HP661. Through extensive analysis involving 500 ns Gaussian molecular dynamics simulations, we gained insights into these systems.

View Article and Find Full Text PDF

Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD).

View Article and Find Full Text PDF

Background: Vascular smooth muscle cell (VSMC) proliferation and phenotypic switching are key mechanisms in the development of proliferative arterial diseases. Notably, reprogramming of the glucose metabolism pattern in VSMCs plays an important role in this process.

Purpose: The aim of this study is to investigate the therapeutic potential and the mechanism underlying the effect of bergenin, an active compound found in Bergenia, in proliferative arterial diseases.

View Article and Find Full Text PDF

Unraveling Desmin's Head Domain Structure and Function.

Cells

March 2024

Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece.

Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!