Malaria presents a tremendous public health burden, and new therapies are needed. Massive compound libraries screened against Plasmodium falciparum have yielded thousands of lead compounds, resulting in an acute need for rational criteria to select the best candidates for development. We reasoned that, akin to antibacterials, antimalarials might have an essential pharmacokinetic requirement for efficacy: action governed either by total exposure or peak concentration (AUC/CMAX), or by duration above a defined minimum concentration [time above minimum inhibitory concentration (TMIC)]. We devised an in vitro system for P. falciparum, capable of mimicking the dynamic fluctuations of a drug in vivo. Using this apparatus, we find that chloroquine is TMIC-dependent, whereas the efficacy of artemisinin is driven by CMAX. The latter was confirmed in a mouse model of malaria. These characteristics can explain the clinical success of two antimalarial drugs with widely different kinetics in humans. Chloroquine, which persists for weeks, is ideally suited for its TMIC mechanism, whereas great efficacy despite short exposure (t1/2 in blood 3 hours or less) is attained by CMAX-driven artemisinins. This validated preclinical model system can be used to select those antimalarial lead compounds whose CMAX or TMIC requirement for efficacy matches pharmacokinetics obtained in vivo. The apparatus can also be used to explore the kinetic dependence of other pharmacodynamic endpoints in parasites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845824 | PMC |
http://dx.doi.org/10.1126/scitranslmed.3006684 | DOI Listing |
J Osteopath Med
January 2025
McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.
Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Psychiatry, School of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan.
Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric condition among children and adolescents, often associated with a high risk of psychiatric comorbidities. Currently, ADHD diagnosis relies exclusively on clinical presentation and patient history, underscoring the need for clinically relevant, reliable, and objective biomarkers. Such biomarkers may enable earlier diagnosis and lead to improved treatment outcomes.
View Article and Find Full Text PDFJ Med Econ
January 2025
UNESCO-TWAS, The World Academy of Sciences, Trieste, Italy.
Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.
Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFGout, a common chronic disease, is characterized by the formation and deposition of monosodium urate (MSU) crystal deposition in articular and nonarticular structures. Osteoarthritis (OA), the most prevalent type of arthritis, is a progressive degenerative joint disease. Previous clinical studies have reported that gout frequently affects OA joints; however, the underlying mechanism remains unidentified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!