A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-vascular endothelial growth factor for neovascular glaucoma. | LitMetric

Anti-vascular endothelial growth factor for neovascular glaucoma.

Cochrane Database Syst Rev

Department of Ophthalmology, Christian Medical College, Vellore, India, 632001.

Published: October 2013

Background: Neovascular glaucoma (NVG) is a potentially blinding secondary glaucoma. It is caused by the formation of abnormal new blood vessels which prevent normal drainage of aqueous from the anterior segment of the eye. Anti-vascular endothelial growth factor (anti-VEGF) agents are specific inhibitors of the primary mediators of neovascularization. Studies have reported the effectiveness of anti-VEGFs for the control of intraocular pressure (IOP) in NVG.

Objectives: To compare the IOP lowering effects of intraocular anti-VEGF agents to no anti-VEGF treatment, as an adjunct to existing modalities for the treatment of NVG.

Search Methods: We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 12), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to January 2013), EMBASE (January 1980 to January 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 January 2013.

Selection Criteria: We included randomized controlled trials (RCTs) and quasi-RCTs of people treated with anti-VEGF agents for NVG.

Data Collection And Analysis: Two authors independently assessed the search results for trials to be included in the review. Discrepancies were resolved by discussion with a third author. Since no trial met our inclusion criteria, no assessment of risk of bias or meta-analysis was undertaken.

Main Results: No RCTs were found that met the inclusion criteria for this review. Two RCTs of anti-VEGF agents for treating NVG were not included in the review due to the heterogeneity and uncontrolled assignment of adjunct treatments received by the study participants.

Authors' Conclusions: Currently available evidence is insufficient to evaluate the effectiveness of anti-VEGF treatments, such as intravitreal ranibizumab or bevacizumab, as an adjunct to conventional treatment in lowering IOP in NVG. Well designed RCTs are needed to address this issue, particularly trials that evaluate long-term (at least six months) benefits and risks since the effects of anti-VEGF agents may be short-term only. An RCT comparing anti-VEGF agents with no anti-VEGF agents taking into account the need for co-interventions, such as panretinal photocoagulation (PRP), glaucoma shunt procedures, cyclodestructive procedures, cataract surgery, and deep vitrectomy, could be of use to investigate the additional beneficial effect of anti-VEGF agents in treating NVG. Since decisions for when and which co-interventions should be used are based on clinical criteria, they would not be appropriate for randomization. However, the design of a study on this topic should aim to balance groups by stratification of co-intervention at time of randomization or by enrolling a sufficient number of participants to conduct subgroup analysis by co-interventions (ideally 15 participants per treatment group for each subgroup). Alternatively, the inclusion criteria for a trial could limit participants to those who receive the same co-intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261636PMC
http://dx.doi.org/10.1002/14651858.CD007920.pub2DOI Listing

Publication Analysis

Top Keywords

anti-vegf agents
32
ovid medline
12
january 2013
12
inclusion criteria
12
anti-vegf
10
anti-vascular endothelial
8
endothelial growth
8
growth factor
8
neovascular glaucoma
8
agents
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!