The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome drives many inflammatory processes and mediates IL-1 family cytokine release. Inflammasome activators typically damage cells and may release lysosomal and mitochondrial products into the cytosol. Macrophages triggered by the NLRP3 inflammasome activator nigericin show reduced mitochondrial function and decreased cellular ATP. Release of mitochondrial reactive oxygen species (ROS) leads to subsequent lysosomal membrane permeabilization (LMP). NLRP3-deficient macrophages show comparable reduced mitochondrial function and ATP loss, but maintain lysosomal acidity, demonstrating that LMP is NLRP3 dependent. A subset of wild-type macrophages undergo subsequent mitochondrial membrane permeabilization and die. Both LMP and mitochondrial membrane permeabilization are inhibited by potassium, scavenging mitochondrial ROS, or NLRP3 deficiency, but are unaffected by cathepsin B or caspase-1 inhibitors. In contrast, IL-1β secretion is ablated by potassium, scavenging mitochondrial ROS, and both cathepsin B and caspase-1 inhibition. These results demonstrate interplay between lysosomes and mitochondria that sustain NLRP3 activation and distinguish cell death from IL-1β release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833073PMC
http://dx.doi.org/10.4049/jimmunol.1301490DOI Listing

Publication Analysis

Top Keywords

membrane permeabilization
12
mitochondrial
9
mitochondrial reactive
8
reactive oxygen
8
oxygen species
8
nlrp3 inflammasome
8
reduced mitochondrial
8
mitochondrial function
8
mitochondrial membrane
8
potassium scavenging
8

Similar Publications

Inorganic polyphosphate (polyP) is a polymer that consists of a series of orthophosphates connected by high-energy phosphoanhydride bonds, like those found in ATP. In mammalian mitochondria, polyP has been linked to the activation of the mitochondrial permeability transition pore (mPTP). However, the details of this process are not completely understood.

View Article and Find Full Text PDF

Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length.

View Article and Find Full Text PDF

Integration of Copper Toxicity Mechanisms in : Advancing Insights at Environmentally Relevant Concentrations.

Toxics

December 2024

Bioengineering Laboratory, ISEP, Polytechnic of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.

This work aimed to characterize the impact of copper (Cu), at environmentally relevant concentrations, using the freshwater microalga . Algae were incubated with 33 or 53 µg/L Cu, in OECD medium, and toxic impacts were evaluated over 72 h, using different cellular and biochemical biomarkers. The exposure to 33 µg/L Cu had an algistatic effect: slowing growth and reducing algal population (53%, at 72 h) without compromising the cell membrane.

View Article and Find Full Text PDF

Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging.

Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h.

View Article and Find Full Text PDF

Apolipoprotein-L Functions in Membrane Remodeling.

Cells

December 2024

Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium.

The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!