Can peripheral blood mononuclear cells be used as a proxy for mitochondrial dysfunction in vital organs during hemorrhagic shock and resuscitation?

Shock

*Department of Emergency Medicine, Gazi University School of Medicine, Ankara, Turkey; and †Children's Hospital of Philadelphia, Anesthesiology, Critical Care and Pediatrics, Perelman School of Medicine, ‡Division of Traumatology, Critical Care and Acute Care Surgery, §Perelman School of Medicine, and ∥Center for Resuscitation Science, University of Pennsylvania, Philadelphia, Pennsylvania.

Published: December 2013

Introduction: Although mitochondrial dysfunction is thought to contribute to the development of posttraumatic organ failure, current techniques to assess mitochondrial function in tissues are invasive and clinically impractical. We hypothesized that mitochondrial function in peripheral blood mononuclear cells (PBMCs) would reflect cellular respiration in other organs during hemorrhagic shock and resuscitation.

Methods: Using a fixed-pressure HS model, Long-Evans rats were bled to a mean arterial pressure of 40 mmHg. When blood pressure could no longer be sustained without intermittent fluid infusion (decompensated HS), lactated Ringer's solution was incrementally infused to maintain the mean arterial pressure at 40 mmHg until 40% of the shed blood volume was returned (severe HS). Animals were then resuscitated with 4× total shed volume in lactated Ringer's solution over 60 min (resuscitation). Control animals underwent the same surgical procedures, but were not hemorrhaged. Animals were randomized to control (n = 6), decompensated HS (n = 6), severe HS (n = 6), or resuscitation (n = 6) groups. Kidney, liver, and heart tissues as well as PBMCs were harvested from animals in each group to measure mitochondrial oxygen consumption using high-resolution respirometry. Flow cytometry was used to assess mitochondrial membrane potential (Ψm) in PBMCs. One-way analysis of variance and Pearson correlations were performed.

Results: Mitochondrial oxygen consumption decreased in all tissues, including PBMCs, following decompensated HS, severe HS, and resuscitation. However, the degree of impairment varied significantly across tissues during hemorrhagic shock and resuscitation. Of the tissues investigated, PBMC mitochondrial oxygen consumption and Ψm provided the closest correlation to kidney mitochondrial function during HS (complex I: r = 0.65; complex II: r = 0.65; complex IV: r = 0.52; P < 0.05). This association, however, disappeared with resuscitation. A weaker association between PBMC and heart mitochondrial function was observed, but no association was noted between PBMC and liver mitochondrial function.

Conclusions: All tissues including PBMCs demonstrated significant mitochondrial dysfunction following hemorrhagic shock and resuscitation. Although PBMC and kidney mitochondrial function correlated well during hemorrhagic shock, the variability in mitochondrial response across tissues over the spectrum of hemorrhagic shock and resuscitation limits the usefulness of using PBMCs as a proxy for tissue-specific cellular respiration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880402PMC
http://dx.doi.org/10.1097/shk.0000000000000026DOI Listing

Publication Analysis

Top Keywords

hemorrhagic shock
24
mitochondrial function
20
mitochondrial
14
mitochondrial dysfunction
12
mitochondrial oxygen
12
oxygen consumption
12
shock resuscitation
12
peripheral blood
8
blood mononuclear
8
mononuclear cells
8

Similar Publications

While acute upper gastrointestinal bleeding (AUGIB) remains clinically critical, the etiology of bleeding and risk factors for mortality remain uncertain. This study aimed to evaluate the underlying causes of AUGIB and identify risk factors associated with fatality. A retrospective survey was conducted in a major clinical hospital in Shanghai, where inpatients diagnosed with AUGIB were meticulously collected and analyzed.

View Article and Find Full Text PDF

Diagnostic performance of prehospital EFAST in predicting CT scan injuries in severe trauma patients: a multicenter cohort study.

Eur J Trauma Emerg Surg

January 2025

Department of Emergency Medicine, Assistance publique des hôpitaux de Marseille (APHM), Marseille University, Timone University Hospital, Marseille, France.

Background: The early mortality of trauma patients, mainly from hemorrhagic shock, raises interest in detecting the presence of non-exteriorized bleeding. Intra-hospital EFAST (Extended Focused Assessment with Sonography for Trauma) has demonstrated its utility in the assessment and management of severe trauma patients (STP). However, there is a lack of data regarding the diagnostic performance of prehospital EFAST (pEFAST).

View Article and Find Full Text PDF

Critical care medicine focuses on understanding the pathophysiological mechanisms and treatment approaches for life-threatening conditions, including sepsis, severe trauma/burns, hemorrhagic shock, heatstroke, and acute pancreatitis, all of which have high incidence rates. These conditions are primarily characterized by acute multi-organ dysfunction, with sudden onset, severe illness, and high mortality rates. Additionally, critical care treatment demands substantial medical resources, imposing significant economic burdens on patients' families and society.

View Article and Find Full Text PDF

Background: Red blood cell (RBC) aggregation can be initiated by calcium and tissue factor, which may independently contribute to microvascular and macrovascular thrombosis after injury and transfusion. Previous studies have demonstrated that increased blood storage duration may contribute to thrombotic events. The aims of this study were to first determine the effect of blood product components, age, and hematocrit (HCT) on the aggregability of RBCs, followed by measurement of RBC aggregability in two specific injury models including traumatic brain injury (TBI) and hemorrhagic shock.

View Article and Find Full Text PDF

Background: Ventricular tachycardia (VT) in patients with cardiac sarcoidosis (CS) can lead to sudden cardiac death. The role of ventricular tachycardia ablation (VTA) in CS has been investigated in a few small, single-center, and larger observational studies, but the evidence still needs to be provided. This study aimed to investigate the clinical outcomes of VTA in patients with CS admitted with a diagnosis of VT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!