We recently introduced Drug Profile Matching (DPM), a novel affinity fingerprinting-based in silico drug repositioning approach. DPM is able to quantitatively predict the complete effect profiles of compounds via probability scores. In the present work, in order to investigate the predictive power of DPM, three effect categories, namely, angiotensin-converting enzyme inhibitor, cyclooxygenase inhibitor, and dopamine agent, were selected and predictions were verified by literature analysis as well as experimentally. A total of 72% of the newly predicted and tested dopaminergic compounds were confirmed by tests on D1 and D2 expressing cell cultures. 33% and 23% of the ACE and COX inhibitory predictions were confirmed by in vitro tests, respectively. Dose-dependent inhibition curves were measured for seven drugs, and their inhibitory constants (Ki) were determined. Our study overall demonstrates that DPM is an effective approach to reveal novel drug-target pairs that may result in repositioning these drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm400813yDOI Listing

Publication Analysis

Top Keywords

drug profile
8
profile matching
8
experimental confirmation
4
confirmation drug-target
4
drug-target interactions
4
interactions predicted
4
predicted drug
4
matching introduced
4
introduced drug
4
dpm
4

Similar Publications

Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry.

View Article and Find Full Text PDF

Improving Renal Protection in Chronic Kidney Disease Associated with Type 2 Diabetes: The Role of Finerenone.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Division of Nephrology and Hypertension, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.

Chronic kidney disease (CKD) is a major complication of type 2 diabetes mellitus (T2D), which often leads to diabetic kidney disease (DKD). Traditional therapies, including renin- angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors, are effective in slowing CKD progression. However, these approaches are insufficient to comprehensively inhibit mineralocorticoid receptor (MR) overactivation in the kidneys, which remains a significant driver of inflammation, fibrosis, and oxidative stress.

View Article and Find Full Text PDF

Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.

View Article and Find Full Text PDF

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems.

View Article and Find Full Text PDF

Aim Traditional Ayurvedic herbo-mineral medicines have proven their potential in managing COVID-19. Cell-based assays of the Svarnvir-IV tablet demonstrated the virucidal activity against SARS-CoV-2 and its therapeutic action, along with safety in cytotoxicity, has been proved. In the present study, in vivo, safety profile and compositional analysis of the Svarnvir-IV tablet were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!