Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784435PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075752PLOS

Publication Analysis

Top Keywords

dcl knockdown
20
dcl
12
mitochondrial activity
12
tumor growth
12
doublecortin-like dcl
8
cytochrome oxidase
8
oxidase activity
8
activity atp
8
atp synthesis
8
activity
5

Similar Publications

Crosstalk between peripheral metabolic organs and the central nervous system is essential for body weight control. At the base of the hypothalamus, β-tanycytes surround the portal capillaries and function as gatekeepers to facilitate transfer of substances from the circulation into the cerebrospinal fluid and vice versa. Here, we investigated the role of the neuroplasticity gene doublecortin-like (DCL), highly expressed by β-tanycytes, in body weight control and whole-body energy metabolism.

View Article and Find Full Text PDF

Pulmonary Hypertension Induces Serotonin Hyperreactivity and Metabolic Reprogramming in Coronary Arteries via NOX1/4-TRPM2 Signaling Pathway.

Hypertension

March 2024

Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China.

Article Synopsis
  • Clinical evidence points to a connection between pulmonary hypertension (PH) and coronary artery (CA) disease, with serotonin, reactive oxygen species, and calcium signaling being crucial factors in this relationship.
  • A study on rats indicates that the NOX-TRPM2 pathway plays a significant role in the remodeling of coronary arteries associated with pulmonary hypertension.
  • Findings show that NOX1/4 and TRPM2 contribute to increased cell proliferation and metabolic changes in CA smooth muscle cells, ultimately leading to mitochondrial dysfunction, but inhibiting NOX1/4 can mitigate these effects.
View Article and Find Full Text PDF

Reduced CircSMOC1 Level Promotes Metabolic Reprogramming via PTBP1 (Polypyrimidine Tract-Binding Protein) and miR-329-3p in Pulmonary Arterial Hypertension Rats.

Hypertension

November 2022

Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H., S.-M.L., Y.-C.L., L.-X.G., M.-J.L.).

Background: Pulmonary arterial hypertension maintains rapid cell proliferation and vascular remodeling through metabolic reprogramming. Recent studies suggested that circRNAs play important role in pulmonary vascular remodeling and pulmonary arterial smooth muscle cells proliferation. However, the relationship between circRNA, cell proliferation, and metabolic reprogramming in pulmonary arterial hypertension has not been investigated.

View Article and Find Full Text PDF

We have recently identified a novel plasticity protein, doublecortin-like (DCL), that is specifically expressed in the shell of the mouse suprachiasmatic nucleus (SCN). DCL is implicated in neuroplastic events, such as neurogenesis, that require structural rearrangements of the microtubule cytoskeleton, enabling dynamic movements of cell bodies and dendrites. We have inspected DCL expression in the SCN by confocal microscopy and found that DCL is expressed in GABA transporter-3 (GAT3)-positive astrocytes that envelope arginine vasopressin (AVP)-expressing cells.

View Article and Find Full Text PDF

Background: In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!