Strains of many infectious agents differ in fundamental epidemiological parameters including transmissibility, virulence and pathology. We investigated whether genotypes of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) differ significantly in transmissibility and virulence, combining data from a nine-year survey of the genetic structure of the M. bovis population in Northern Ireland with detailed records of the cattle population during the same period. We used the size of herd breakdowns as a proxy measure of transmissibility and the proportion of skin test positive animals (reactors) that were visibly lesioned as a measure of virulence. Average breakdown size increased with herd size and varied depending on the manner of detection (routine herd testing or tracing of infectious contacts) but we found no significant variation among M. bovis genotypes in breakdown size once these factors had been accounted for. However breakdowns due to some genotypes had a greater proportion of lesioned reactors than others, indicating that there may be variation in virulence among genotypes. These findings indicate that the current bTB control programme may be detecting infected herds sufficiently quickly so that differences in virulence are not manifested in terms of outbreak sizes. We also investigated whether pathology of infected cattle varied according to M. bovis genotype, analysing the distribution of lesions recorded at post mortem inspection. We concentrated on the proportion of cases lesioned in the lower respiratory tract, which can indicate the relative importance of the respiratory and alimentary routes of infection. The distribution of lesions varied among genotypes and with cattle age and there were also subtle differences among breeds. Age and breed differences may be related to differences in susceptibility and husbandry, but reasons for variation in lesion distribution among genotypes require further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781146 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074503 | PLOS |
BMC Microbiol
January 2025
Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia.
Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
Background: Cluster and contact investigations aim to identify and treat individuals with tuberculosis (TB) and latent TB infection (LTBI). Although genotyped cluster investigations may be superior to contact investigations in generating additional epidemiological links, this may not necessarily translate into reducing infections. Here, we investigated the impact of genotyped cluster investigations compared to standard contact investigations on the LTBI care cascade in a low incidence setting.
View Article and Find Full Text PDFIJID Reg
March 2025
SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Human Genetics, Stellenbosch University, Cape Town, South Africa.
Objectives: Nontuberculous mycobacteria (NTM) are increasingly recognized opportunistic pathogens found ubiquitously in the environment. The presence of multiple NTM species at the site of disease complicates diagnosis and treatment.
Case And Management: A 40-year-old patient who tested positive for HIV, with an absolute clusters of differentiation 4+ T-cell count of 3 cells/µl and cryptococcaemia, presented with hemoptysis, productive cough, and weight loss.
Objectives: This study aimed to investigate genotypic characteristics and drug resistance profiles of complex (Mtbc) strains isolated from patients with suspected tuberculosis (TB) in Gabon.
Methods: We performed whole genome sequencing of 430 Mtbc strains cultured between 2012 and 2022. Phylogenetic strain classification, genomic resistance prediction, and cluster analysis were also performed.
Infect Genet Evol
January 2025
Immunogenomics & Systems Biology group, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India. Electronic address:
Whole genome sequencing has been used to investigate the genomic diversity of M. tuberculosis in the northern and southern states of India, but information about the eastern part of the country is still limited. Through a sequencing-based strategy, this study seeks to comprehend the diversity and drug resistance pattern in the eastern region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!