Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Runt related transcription factor 2 (RUNX2) is a key regulator of osteoblast differentiation. Several variations within the RUNX2 gene have been found to be associated with significant changes in BMD, which is a major risk factor for fracture. In this study we report that an 18 bp deletion within the polyalanine tract (17A>11A) of RUNX2 is significantly associated with fracture. Carriers of the 11A allele were found to be nearly twice as likely to have sustained fracture. Within the fracture category, there was a significant tendency of 11A carriers to present with fractures of distal radius and bones of intramembranous origin compared to bones of endochondral origin (p = 0.0001). In a population of random subjects, the 11A allele was associated with decreased levels of serum collagen cross links (CTx, p = 0.01), suggesting decreased bone turnover. The transactivation function of the 11A allele showed a minor quantitative decrease. Interestingly, we found no effect of the 11A allele on BMD at multiple skeletal sites. These findings suggest that the 11A allele is a biologically relevant polymorphism that influences serum CTx and confers enhanced fracture risk in a site-selective manner related to intramembranous bone ossification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781152 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072740 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!