Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances.

Sci Rep

1] School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China [2] Tianjin Key Laboratory of Applied Catalysis Science & Technology, 300072, PR China [3] The Synergetic Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, PR China.

Published: October 2013

To substitute for petroleum, Fischer-Tropsch synthesis (FTS) is an environmentally benign process to produce synthetic diesel (n-paraffin) from syngas. Industrially, the synthetic gasoline (iso-paraffin) can be produced with a FTS process followed by isomerization and hydrocracking processes over solid-acid catalysts. Herein, we demonstrate a cobalt nano-catalyst synthesized by physical-sputtering method that the metallic cobalt nano-particles homogeneously disperse on the H-ZSM5 zeolite support with weak Metal-Support Interactions (MSI). This catalyst performed the high gasoline-range iso-paraffin productivity through the combined FTS, isomerization and hydrocracking reactions. The weak MSI results in the easy reducibility of the cobalt nano-particles; the high cobalt dispersion accelerates n-paraffin diffusion to the neighboring acidic sites on the H-ZSM5 support for isomerization and hydrocracking. Both factors guarantee its high CO conversion and iso-paraffin selectivity. This physical-sputtering technique to synthesize the supported metallic nano-catalyst is a promising way to solve the critical problems caused by strong MSI for various processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788372PMC
http://dx.doi.org/10.1038/srep02813DOI Listing

Publication Analysis

Top Keywords

isomerization hydrocracking
12
cobalt nano-particles
8
tuning interactions
4
interactions zeolite
4
zeolite supported
4
supported metal
4
metal physical-sputtering
4
physical-sputtering achieve
4
achieve higher
4
higher catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!